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Abstract

Cross-matching in astronomical catalogs is a first-step and common procedure
to study and analyze a variety of issues regarding astrophysics. It consists in the
identifications of the same celestial object in multiple catalogs that are captured
by different instruments. Multiple methodologies were conceived over the years
to improve results in distinctive conditions. In this work we will run two different
versions of a Likelihood Ratio Test (LRT) [3, 7] algorithm and use the results to
extract insights in order to reformulate the problem under a ML frame by means of
a mixture model.

1 Introduction

The application of machine learning in the as-
tronomical field is yet immature or not existing,
specially regarding the current studied problem:
x-matching catalogs. This work, driven and fi-
nanced by ISDEFE in partnership with the Euro-
pean Space Agency (ESA) (the latter being client
to the former), is intended to apply ML techniques
as a basis for a preliminary basis in this area,
bringing fairly satisfying results. This document
portrays the research process carried out by the
combined work of ISDEFE and the University
Carlos III of Madrid.

Astronomical catalogs are large databases storing
the position and intensity magnitude of celestial
objects covering a given sky region. Depending
on satellite’s payload, they can capture electro-
magnetic excitation produced by stars and other
sources, at a given spectral band. In practice,
these instruments are limited to a small range
of wave lengths, and usually it is needed more
than one satellite to capture the excitation of such
sky region at wide spectral bands (e.g. infrared,
visual, X-ray, etc).

The measures’ precision is highly influenced by
the instrument’s specifications. However, noise is

not just a matter of the camera’s quality. Images
captured are just a projection of the 3D world
onto a plane. Thus, any point-measure contained
in the image is the sum of all radiation emitted
along that specific direction, coming from the
background or foreground. In such way, a galaxy
laying behind a star of interest, in its direction
seen from Earth, could be distorting its flux mag-
nitude measure, completely modifying the star’s
real spectral properties.

This work is structured as follows. In the first part
(Section 3) a Likelihood Ratio Test (LRT) is used
in order to produce identifications from an optical
and infrared catalogs. LRT was firstly introduced
in [5] and, in the following decades, expanded
with [6], [1] and most recently reviewed by [4].
Nowadays is considered a popular methodology
for x-matching catalogs. More specifically, two
modalities of LRT will be implemented based
upon [3] (only-magnitude) and [7] (color and
magnitude). Best results are obtained with the
last, where the addition of color into the likeli-
hood ratio improves the discriminatory behavior
of such algorithm. An in-depth study of all pa-
rameters and factors influencing the technique is
also carried out.
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The second and last section of this document (Sec-
tion 4) is dedicated to produce experiments over
the data to study hidden statistical structure that
could shed light and serve as a basis for new
ML methodologies trying to solve the counter-
parts identification problem (x-matching). Re-
sults from the previous part will be used in or-
der to compare similarities upon the extracted
insights. Statistical grouping is obtained utiliz-
ing an unsupervised Gaussian Mixture Model
(GMM). The goal is to identify differentiated
structures within data, allowing to characterize
two populations to be splitted: true vs false iden-
tifications.

Results show moderate evidence that needs to be
further addressed using more complex techniques
and partly limited by data. Nonetheless, a starting
point is provided for further research lines.

Finally, conclusions and further work are exposed
(Section 5).

2 Data & Preprocessing

In the present work the data used comes from
three catalogs covering the same sky region in
distinct frequency bands. The goal is to iden-
tify, with high confidence, the greatest amount of
points simultaneously present in all catalogs.

• Optical catalog (OPT):

– Number of objects: 19.670
– Number of bands: 6 from λ ∈
[450, 1250]nm (B, V, R, I, J, K)

• Mid infrared catalog (MIPS):

– Number of objects: 1.038
– Number of bands: 1 at λ = 24µm

• Far infrared catalog (PACS):

– Number of objects: 480
– Number of bands: 2 from λ ∈

[100, 160]µm

As a preprocessing step, a position correction
was carried out. The issue raised when it was
found that only a small number of sources from
PACS were found near (less that 2′′) from any
object in MIPS. This fact proofed a positional
offset between both catalogs. The position cor-
rection was done by minimizing, in an iterative
manner, the mean distance of all close object be-
tween catalogs. For generalization purposes, the
same correction was performed between MIPS
and OPT.

3 Part 1: Likelihood Ratio Test as

X-match algorithm

In this section the theoretical background of the
LRT iterative X-matching algorithm will be de-
veloped. Both versions will be explained in detail
and their results will be shown for two pairs of
catalogs within each LRT modality.

Source matching will be performed using a ref-
erence and a secondary catalog. In the present
document, the secondary catalog will always be
set to OPT since it holds the greatest number of
sources and numerous magnitudes measurements
in several bands. Therefore, for each LRT ver-
sion, the algorithm will match MIPS and PACS
(reference) against OPT (secondary).

The first modality of the LRT will only include
brightness and positional information into the
computation of the probability ratio, whereas the
second version will additionally include the color
1.

3.1 LRT general formulation

When a source is identified in a different catalog,
it is referred to as its counterpart. The input of the
algorithm consists of both catalogs to be matched,
and the output produced is a list of identifications
or counterparts.

The iterative algorithm consists in computing the
following ratio for each pair of candidates:

LR =
q(x1, x2, . . . )f(r)

n(x1, x2, . . . )
(1)

In equation 1, q(x1, x2, . . . ) represents the prob-
ability distribution that a reference source (MIPS
or PACS) has a counterpart described by param-
eters x1, x2, . . . , where such dimensions could
hold magnitude, color or other properties that are
extracted from sources within the secondary cat-
alog (OPT). Denominator n(x1, x2, . . . ) is the
surface density of background sources with pa-
rameters x1, x2, . . . or, in other words, the prob-
ability that the candidate counterpart belongs to
the background. Last, f(r) is the angular sepa-
ration density function and is assumed Gaussian:

f(r) =
1

2πσ2
exp

(

−
r2

2σ2

)

(2)

, where σ =
√

σ2

ref
+ σ2

sec
stands for the standard

deviation coming from the 1 σ positional errors
of the reference and secondary catalogs.

1Color is the magnitude difference between the source of interest and the candidate counterpart, i.e.
c = mref −msec.
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As mentioned at the beginning, variables
x1, x2, . . . will differ from one LRT modality to
other. In the first one, densities q(m) and n(m)
will be univariate and solely dependent on the op-
tical magnitudes. On the other hand, the second
version will describe the same functions adding
the color dimension so that q(m, c) and n(m, c)
are now bivariate. f(r) remains as written in
equation 2.

For each iterative loop, empirical density func-
tions will improve as a result of a maximization
process applied under a given criteria. At each
iteration, a set of predefined thresholds will mask
the LR (eq. 1) computed using the upgraded
estimations q and n to each potential pair of coun-
terparts, producing a final list of identifications
that will be used to improve the former densi-
ties in the next loop. The algorithm is run until
convergence.

3.2 LRT methodology 1: magnitude

In the current version the LR is defined as fol-
lows:

LR =
q(m)f(r)

n(m)
(3)

Functions q and n depend only on the magnitude
intensity of the secondary catalog, OPT in our
case.

3.2.1 Computation of n(m)

The surface density n(m) is computed at the be-
ginning and stays fixed throughout the procedure.
The density function will be estimated using a
Gaussian Kernel Density Estimator (KDE) us-
ing the sources’ magnitudes from the secondary
catalog (OPT) that are far away from every in-
stance contained in the reference catalog (MIPS
or PACS).

The minimum distance considered for a given
source to be sufficiently distant depends on the
sky area covered by the catalog. In this work,
any observation at a distance greater than 5′′ and
smaller that 30′′ is considered background.

The resulting estimator is a real function defined
over m describing the distribution of magnitudes
contained in the background.

3.2.2 Computation of q(m)

As opposed to n(m), q(m) changes at each iter-
ation, converging to a more accurate description
of the magnitude distribution of counterparts.

As an initial approximation, q(m) is computed us-
ing auxiliary functions and other parameters since
such distribution is not directly observable. First,
a Gaussian KDE estimator is used to compute
total(m), which represents the empirical distribu-
tion of sources that are close to each point in the
reference catalog, in our case less that 5′′. Then,
real(m) is computed as:

real(m) = total(m)−Drefπr
2

0
n(m) (4)

Dref (sources/arcsec2) is the sky density of the
reference catalog, which is multiplied by the area
defined by the circle centered at a given reference
source with radio r0 = 5′′. Therefore, the em-
pirical distribution of close objects is corrected
by the surface density normalized by a constant,
in order to respect dimensional analysis. Usually
the negative term is smaller than the first one,
producing a short adjustment to total(m).

Once real(m) is obtained, the initial estimation
of q(m) is:

q(m) =
real(m)

∑

m real(m)
Q0 (5)

Due to catalog’s limitations, it is only possible
to detect a portion of true counterparts. Such
portion is represented by Q0, initially set to
Q0 = N1/Nref. 2, where N1 is the sample size
used to build total(m). Q0 will also be updated
at each loop.

3.2.3 Likelihood ratio thresholds

At this point, all three distributions conforming
the LR (eq. 3) are computed and ready to perform
the first iteration. LR is obtained for all plausi-
ble candidates i.e. close objects from OPT that
lie proximal (< rcand = 1′′) to all sources in the
reference catalog. Since LR(m, r) is a function
of the candidate’s magnitude (m) and its distance
to its potential counterpart (r), it can be obtained
with ease for each candidate.

By comparing the LR calculated with a predefined
threshold (Lth), a new set of sources is obtained,
representing the estimated counterparts for that
given Lth. Note that different counterparts will be
produced depending on the value of Lth and one
source could have multiple counterparts. More-
over, the value of Lth that throws the optimal set
of counterparts with high confidence, is initially
unknown and needs to be found heuristically by
defining a closed range of values.

In the situation when one reference source is esti-
mated to have more than one identification, it is
kept the one with highest LRi.

2In [2], it is developed a procedure to estimate Q0 in an unbiased manner. In this work we stick to a simple
initialization as Q0 rapidly converges to a stable value after a few iterations.
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An expected question would be how do we choose
the optimal threshold that produces the most re-
liable results. This is done by defining two mea-
sures that quantify the efficiency or quality at the
output of the algorithm.

For each set of counterparts associated to a given
Lth, both quality measures are calculated. The
set that maximizes a criteria function depending
on both parameters is retrieved for an upgraded
expression of q(m) in the subsequent iterations.
The process is repeated until convergence.

The two quality measures are Reliability (R, eq.
6) and Completeness (C, eq. 7). R(Lth) repre-
sents the fraction of accepted identifications that
are correct and it can be thought of as a measure
of confidence regarding the quality of the iden-
tifications. C(Lth) qualifies the fraction of true
identifications that are accepted. In this context,
accepted identifications refers to the total num-
ber of candidates i.e. those sources close to each
observation in the reference catalog, while real
counterparts are considered when their computed
LRi is above the threshold.

R(Lth) = 1−
1

Q0Nref

∑

LRi≥Lth

1−Q0

Q0LRi + (1−Q0)

(6)

C(Lth) = 1−
1

Q0Nref

∑

LRi<Lth

Q0LRi

Q0LRi + (1−Q0)

(7)

Both parameters3 are in a trade-off relationship,
meaning that improving one of them often penal-
izes the other one. For instance, it is possible to
achieve a maximum C by lowering the threshold
(accepting the majority of candidates) at the cost
of acquiring less confidence for the identifications
i.e. small value of R.

To take the above in account, the most common
criteria to select Lth is that where R(Lth) and
C(Lth) equate or, in other words, where both
curves cross with each other. Nevertheless, cri-
teria can be modified to achieve specific require-
ments.

Returning to our starting point, the update proce-
dure for q(m), once the final set of identifications
is obtained for the current iteration, is reused in
the consecutive loop to estimate q(m) again with
a KDE. In addition, the value of C associated
to the previous set of identifications is used to
update the value of Q0.

3.2.4 Results X-match: MIPS vs OPT

By running the algorithm for each magnitude of
OPT, the best results where obtained using the K
band of the secondary catalog (m = K).

Figure 1: Empirical distributions. Blue dashed
line represents total(m), red dotted line depicts
the normalized n(m) and the solid black line is
the resulting real(m).

In Figure 1 it is shown the three auxiliary func-
tions used to build q(m). As explained, the back-
ground factor causes little influence in the com-
putation of real(m).

Before presenting the results obtained, it will be
explained the most relevant design decisions and
their reasons.

The estimator used for Q0 (N1/Nmips) produced
a small value (0.48) that caused numerical prob-
lems. Since Q0 is updated every iterations and
usually converges to a stable value, the initialized
value was set to 0.8.

Figure 2: R and C as function of Lth in last
iteration.

For our present purpose, R and C were given the
same importance. The Lth selection criteria or
function to be maximized at each run was the sum
of both parameters, as opposed to the crossing
point of both curves (Figure 3).

3The expressions for Completeness and Reliability are modified from the original definition exposed in [6],
and the one used in [7] is used instead.
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Figure 3: Selection criteria (R+C) and optimal
value of Lth in last iteration.

In Figures 4 and 5 it can be seen that parameters
R and C reach convergence at approximately
iteration 10.

Figure 4: R evolution.

Figure 5: C evolution.

itermax (1) R (2) C(3) Lth(4)
20 0.922 0.965 0.034

Nmatch(5) NMIPS(6) - -
630 1138 - -

Table 1: Final values of the LRT (modality 1)
for MIPS vs OPT. (1) Number of iterations. (2)
Converged value of R. (3) Converged value of
C. (4) Final threshold selected. (5) Number of
MIPS sources with at least one identification. (6)
Total sources in MIPS.

Table 1 summarizes the LRT results. With a value
of 0.922 for R it can be said that the identifica-
tions are reliable. The completeness parameter
also achieves a high score in spite of the fact
that the number of identifications (column (5)) is
slightly above half of the total sources contained
in MIPS (column (6)). The last is due to the
inherent limitation of catalogs described by Q0,
meaning that is actually impossible to identify the
totality of sources.

3.2.5 Results X-match: PACS vs OPT

The results for PACS achieve higher scores than
the previous x-match, mainly caused by the sig-
nificant decrease of points. This is not always the
case since less data implies more deficient esti-
mates regarding the probability densities. Never-
theless, PACS contains a sufficiently large sample
size to achieve acceptable results.

While in MIPS x-match, the best results were
obtained using the optical band K, PACS obtains
optimal results by means of J magnitude in OPT.

Moreover, and also influenced by the small cata-
log size, the initialization of Q0 had to be adjusted
at higher proportion to avoid numerical problems.
The final value selected was Q0 = 0.9.

Figure 6: Empirical distributions. Blue dashed
line represents total(m), red dotted line depicts
the normalized n(m) and the solid black line is
the resulting real(m).

As depicted in Figure 6, total(m) is more affected
by the (normalized) background density n(m) in
contrast with the previous results. This is due
to the data sizes used to estimate such densi-
ties. In MIPS, the number of sources to construct
total(m) and n(m) was high w.r.t. the current sce-
nario. Note that the lesser points fed into a KDE,
the higher the peak (mode) is located within the
density. Probability mass tends to concentrate in
few points creating abrupt peaks.
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Figure 7: R and C as function of Lth in last
iteration.

Figure 8: Selection criteria (R+C) and optimal
value of Lth in last iteration.

The same Lth selection criteria (R + C) as in
MIPS was used. Interestingly, as showed in Fig-
ures 7 and 8, the optimal threshold is obtained
near the intersection of both curves despite the
lack of an explicit implementation of such crite-
ria. The reason behind could include many factors
that are not straightforward and easy to observe.

Similar to the evolution over iterations of param-
eters R and C showed in the previous section,
Figures 9 and 10 exposes the convergence around
the 10th iteration.

Figure 9: R evolution.

Figure 10: C evolution.

itermax (1) R (2) C(3) Lth(4)
20 0.974 0.979 0.02

Nmatch(5) NPACS(6) - -
68 408 - -

Table 2: Final values of the LRT (modality 1)
for PACS vs OPT. (1) Number of iterations. (2)
Converged value of R. (3) Converged value of
C. (4) Final threshold selected. (5) Number of
PACS sources with at least one identification. (6)
Total sources in PACS.

Table 2 summarizes the final parameters. As
explained, the reliability and completeness sur-
passed that obtained with MIPS. Apart from the
sample size difference, PACS data could hold
more statistical coherence when crossed against
OPT. It is true that the proportion of identifica-
tions is significantly lower than in MIPS (16% vs
0.55%). That could have been the cost to increase
the reliability of the counterparts identifications.
This is in line with the actual characteristics of
the observations. PACS data are subject to higher
uncertainties in both position and brightness es-
timation, what is made worse by "blending" (i.e:
different sources contributing differently to differ-
ent data points), so it is somehow expected that
the algorithm gives lower number of matches, al-
though the R and C of each of them can be higher.

3.3 LRT methodology 2: magnitude and
color

In this second modality color is introduced in the
LR calculation (eq. 8) as a discriminative dimen-
sion. Therefore, q and n are bi-dimensional func-
tions. Such change endows both curves with more
complexity, allowing them to capture more differ-
entiating characteristics that ultimately improves
performance w.r.t the previous LRT modality.

LR =
q(m, c)f(r)

n(m, c)
(8)
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Technically, the color dimension is not contin-
uous, it is a discrete variable with a predefined
number of maximum possibilities that has to be
adjusted to obtain best results.

In order to define the number of different values
that c may have, the range [cmin, cmax]

4 is di-
vided in equally spaced color bins, ranging from
2 in advance. Note that c refers to a single color
while each bin represents a sub-range within the
selected color.

For the sake of generalization, it is possible to
consider an only-magnitude LRT by introducing
a single color bin in such dimension. Nonetheless,
the procedures differ since the computation of q
varies from one methodology to the other.

3.3.1 Computation of n(m, c)

The computation of n(m, c) follows the same
procedure as in the only-magnitude LRT version,
with the difference that a KDE is computed for
each bin conforming the discrete domain of c.

As a result, each source will only contribute to
a single color bin at a time when estimating
n(m, c = b), with b = 2, 3, .., bmax.

3.3.2 Computation of q(m, c)

The addition of the c dimension complicates the
procedure described in the only-magnitude LRT

in order to compute q(m, c). This can be seen
when computing the fraction of counterparts with
color c, Q0(c) which now is a biased estima-
tor if N1(c)/Nref is considered. Note that, in
practice, there is no need to store the value of
Q0(c) for each color bin as parameters R and C

are computed by using Q0 =
∑

c Q0(c)/Nref .
As a workaround, near sources are first split by
color and then, each color bin is also divided by
magnitude to obtain the first iteration estimate of
q(m, c), again using a KDE.

The rest of the iterative algorithm is kept un-
changed, including the expressions of R and C

(eq. 6 & 7 respectively). In the subsequent it-
erations, q(m, c) is updated by keeping the list
of final identifications (from the previous itera-
tion), which will be split by color and magnitude
to estimate the new distribution of counterparts
q(m, c).

3.3.3 Results X-match: MIPS vs OPT

The improvement in performance obtained by
introducing colors can be seen in the following
results.

Since K magnitude (OPT) achieved best results
in the only-magnitude LRT shown in 3.2.4, the
same band was chosen in this experiment.

Figure 11: Final values of parameters R (blue),
C (green) for each run with different color bin
separation. The red dotted curve represents the
criteria function (mean(R,C) to be maximized.

By running the algorithm varying the maximum
number of color bins, it was found that a division
of 6 ranges in the color dimension (color bins)
was the best choice (Figure 11).

The criteria selection for Lth at each iteration
was changed to the mean between reliability and
completeness parameters. It showed to produce a
more stable and controlled behavior than in previ-
ous criteria, without causing numerical problems.

Regarding the initialization of Q0, the default op-
tion described in [7] did not bear any numerical
issue as occurred in only-magnitude LRT.

Figure 12: q(m, c) for 6 color bins. Each curve
represents q(m, c = c∗). Color bins domain are
defined in legend’s ranges. Separation between
color bins is ≈ 1.6.

Figure 12 along with Table 3 shows the esti-
mated q(m, c) for each color bin, their ranges
and the number of sources used to construct
them. Despite some q(m, c = c∗) were esti-
mated using a small number of points, 6 color

4cmin = min(mref )−max(msec) and cmax = max(mref )−min(msec)
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bins manifested the best discriminative behavior,
most surely the reason behind the performance
improvement. Curves although overlapped, are
centered in different ranges, accumulating a big
amount of the probability mass of each color bin
in distinctive areas of the magnitude axis.

It can be seen that most of the sources are located
in the green, red and purple color bins (according
to the depicted legend in Table 3).

Color bin (1) Q0(c) (2)
−4.21 < K −mmips ≤ −2.6 9
−2.6 < K −mmips ≤ −0.99 11
−0.99 < K −mmips ≤ 0.61 59
0.61 < K −mmips ≤ 2.22 331
2.22 < K −mmips ≤ 3.82 441
3.82 < K −mmips ≤ 5.43 61

Table 3: Color bins and their domain. (1) Upper
and lower bound of each bin . (2) Number of
samples to estimate each q(m, c = c∗).

Color bin (1) N0(c) (2)
−4.21 < K −mmips ≤ −2.6 61
−2.6 < K −mmips ≤ −0.99 265
−0.99 < K −mmips ≤ 0.61 2806
0.61 < K −mmips ≤ 2.22 33133
2.22 < K −mmips ≤ 3.82 7324
3.82 < K −mmips ≤ 5.43 22

Table 4: Color bins and their domain. (1) Upper
and lower bound of each bin . (2) Number of
samples to estimate each n(m, c = c∗).

Figure 13: n(m, c) for 6 color bins. Each curve
represents n(m, c = c∗).

In the same way as q(m, c), Figure 13 and Table 4
depicts n(m, c). Note that color bins are defined
in the same domains.

There are three observations in contrast to the esti-
mation of q(m, c). First, much more sources were
fed into the KDE, resulting into most reliable es-
timations. Second, each curve is not defined in

the same areas as those in q(m, c). Some appear
to be slightly stretched or shifted and overlapping,
in some cases, is less present.

Lastly, it is interesting that in spite of being the
optimal color divisions 6, the background density
does not seem to show the same optimal division
as in q(m, c). This is noticeable by looking at
the similarity between the red and purple curve,
almost trying to explain the same cluster of points.
Figure 14 shows the usual behavior of parameter
curves within a single iteration (2 in this case).
An early iteration was selected for convenience.

Figure 14: R and C as a function of Lth in itera-
tion 2.

Figure 15: R evolution for 6 color bins.

Figure 16: C evolution for 6 color bins.
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Figures 15 and 16 show the convergence of pa-
rameters R and C respectively. The main obser-
vation in contrast is that convergence seems to be
more spiky and late than in other examples.

itmax (1) R (2) C (3) Lth (4)
20 0.998 0.999 0.001

Nmatch (5) NMIPS (6) Nsame (7) -
855 1138 570 -

Table 5: Final values of the LRT (modality 2)
for MIPS vs OPT. (1) Number of iterations. (2)
Converged value of R. (3) Converged value of
C. (4) Final threshold selected. (5) Number of
MIPS sources with at least one identification. (6)
Total sources in MIPS.(7) Number of sources
identified to the same counterpart in both LRT

modalities.

Table 5 summarizes results. With the same
amount of iterations, nearly perfect values for
reliability and completeness are achieved, as well
as a significant increase in the amount of sources
identified (column 5). Also, 570 sources share
the same counterpart estimated using both LRT
modalities (column 7). This exhibits the pres-
ence of coherence in the algorithm whether is the
only-magnitude version or the color one.

3.3.4 Results X-match: PACS vs OPT

The present experiment ran on PACS shows im-
provement in the parameter scores (R and C)
although some aspects, both in implementation
and data, differ from the only-magnitude LRT

version.

Firstly the selection criteria was changed for each
iteration. The best list of identification was that
whose Lth defined the intersection between both
curves 5. This was the only criteria in lack of
numerical issues.

In addition, PACS contains many missing val-
ues in both bands, reducing even more the total
working set of sources fed to the algorithm. Ob-
viously, the intensity band (λ = 160µm) holding
more points was used. This is a crucial change
that affects directly to the algorithm performance.
The first LRT modality need not to take into ac-
count any magnitude stored in the reference cat-
alog. The positions (along its errors) is the only
input to the algorithm needed from PACS. In
this modality, color computation is required thus
PACS magnitudes. In other words, the reference
catalog fed into both modalities of LRT is not the

same. Therefore, fair comparison between both
techniques under the same catalog is not possible.

Regarding the results and as shown in Figures 17
and 18, the optimal color division is 3 color bins.
Also J band (OPT) for magnitude dimension was
considered as its outcomes where optimal in com-
parison with the rest of the bands.

Figure 17: Final values of parameter R for each
run with different color bin separation.

Figure 18: Final values of parameter C for each
run with different color bin separation.

Note that the above plots are almost identical even
if they represent different parameters. This is the
resulting consequence of the criteria used for op-
timal Lth selection (crossing point of curves).

In the same way than the previous results, q(m, c)
is shown in Figure 19 in addition with Table 6. In
contrast with MIPS results, each curve does not
present the same amount of overlapping, mostly
due to the reduction of color bins. Moreover,
the vast majority of points seem to belong to the
right-most curve (green q(m, c = c∗)).

5Due to (numerical) precision resolution, is not possible to retrieve the same value of R and C for the same
Lth. Nevertheless, the numerical difference is negligible (orders of < 0.001).
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Figure 19: q(m, c) for 3 color bins. Each curve
represents q(m, c = c∗).

Color bin (1) Q0(c) (2)
2.46 < J −mpacs ≤ 5.26 9
5.26 < J −mpacs ≤ 8.05 61
8.05 < J −mpacs ≤ 10.85 271

Table 6: Color bins and their domain. (1) Upper
and lower bound of each bin . (2) Number of
samples to estimate each q(m, c = c∗).

For the background density n(m, c) (Figure 20
and Table 7) similar insights can be extracted
from those described in reference to Figure 13
from MIPS experiment.

Figure 20: n(m, c) for 3 color bins. Each curve
represents n(m, c = c∗).

Color bin (1) N0(c) (2)
2.46 < J −mpacs ≤ 5.26 79
5.26 < J −mpacs ≤ 8.05 1050
8.05 < J −mpacs ≤ 10.85 14487

Table 7: Color bins and their domain. (1) Upper
and lower bound of each bin . (2) Number of
samples to estimate each n(m, c = c∗).

Figure 21: R and C as a function of Lth in itera-
tion 29.

Figure 21 shows R and C as a function of Lth

in the last iteration. It is clearly seen that the se-
lection criteria is the intersection, outputting the
optimal point.

Figure 22: R evolution for 3 color bins.

Figure 23: C evolution for 3 color bins.

Figures 22 and 23 print the evolution of both pa-
rameters at each iteration. The first observation is
that both curves show almost the exact tendency
(due to criteria) and that convergence is reached
later in comparison with previous examples. In
fact, the maximum number of iterations had to
be increased in order to reach convergence. Ad-
ditionally, the current example shows how the
modification of the criteria influences also in the
evolution of parameters producing, in this exam-
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ple, more abrupt changes w.r.t. other parameters’
evolutions already presented.

itmax (1) R (2) C (3) Lth (4)
30 0.98 0.98 0.048

Nmatch (5) NPACS (6) Nsame (7) -
59 383 4 -

Table 8: Final values of the LRT (modality 2)
for PACS vs OPT. (1) Number of iterations. (2)
Converged value of R. (3) Converged value of
C. (4) Final threshold selected. (5) Number of
PACS sources with at least one identification. (6)
Total sources in PACS.(7) Number of sources
identified to the same counterpart in both LRT

modalities.

Finally, Table 8 stores the final data results.
Again, reliability and completeness parameters
improve in comparison to the only-magnitude ver-
sion, however and as mentioned before, address-
ing differences is not possible due to distinctive
scenarios mainly influenced by input data.

In proportion, the number of matches found in
both versions w.r.t. the totality of points stays
roughly identical, but identifications in the cur-
rent LRT modality are more confident given the
resulting values of R and C.

Despite the acceptable performance, at least in
a quantitatively sense, it is oddly negative that
only 4 identifications are common in both tech-
niques. This could be explained as a result of
the elimination of sources that were fed into the
only-magnitude version but absent in the color
one.

Last insight precisely proofs a considerable down-
fall in this family of algorithms: there is not an
exact procedure to firmly address the performance
of algorithms since its ’unsupervised’ nature pre-
vents results to be objectively checked. Quality
parameters are directly influenced by data struc-
ture and characteristics, not real facts as happen
in supervised conditions.

12



4 Part 2: Problem Reformulation

Under ML Frame

The second part of this document is presented
as a proposal in the form of a new research line,
being its goal the exploration of unique solutions
framed into the ML field, in order to approach the
studied x-matching problem. This is carried out
and based upon the results obtained from the LRT

algorithm, in addition to well known probabilistic
techniques to address and quantify insights and
structures that can be extracted from the available
data.

A Gaussian mixture model (GMM) is used to ob-
tain a cluster separation between (false or true)
identifications, feeding it with pairs of points,
each of them belonging to different catalogs. Ana-
lyzing similarities on the optimal color bins found
in the LRT and the results from this section (i.e.
clusters obtained), it might be possible to observe
common data structures, allowing to deeply un-
derstand the x-matching problem from several
points of view.

A primal goal is to proof the following hypothesis:
the optimal color bin separation found on q(m, c)
in LRT is related to the cluster’s structure found
by the mixture model. The last is thoughtfully
chosen as a probabilistic unsupervised method
in order to satisfy the conditions required for an
unbiased study.

4.1 Motivation

One of the main questions that intuitively raise
when x-matching astronomical catalogs is if it ex-
ists any data structure that can be extracted, inde-
pendently from both catalogs, similar enough that
can provide a discriminatory effect for it to dis-
card a great proportion of wrong identifications.
If both catalogs embody a similar statistical dis-
tribution within clusters, it might correspond to
observations present in both catalogs at the same
time. However, there exist many factors that can
distort such structures (e.g. number of total sam-
ples in both catalogs, among others), producing
an increase in the problem’s complexity if a par-
allel analysis is carried out on each catalog.

When looking at the distributions of q(m, c) and
n(m, c) (Figures 20 and 19, for example), in spite
of their statistical closeness, one can think that
there exist subtle differences between identifica-
tions that are accepted as correct and those that
are not. Detecting such disparities could be useful
in order to apply a general discriminatory effect
on the candidate’s set.

By taking a probabilistic approach (GMM) it may
be interesting to see how identifications are dis-

tributed among clusters. Utilizing the learned
model and evaluating new pairs that are assumed
not to be counterparts, intuitively one can expect
an statistical difference regarding the assignment
of true counterparts versus wrong identification
among each cluster.

In order to materialize the above in practice, a
set containing the appropriate and relevant infor-
mation is required. The axiom from which this
set is build relies on the fact that true counter-
parts are necessarily located near each other. Tak-
ing close surrounding points from both catalogs
should manifest disparate statistical arrangement
than those further away.

4.2 Implementation and considerations

Throughout this experiment, MIPS and OPT cat-
alogs will be used. Therefore, the best results
from the mentioned databases, obtained in the
color-modality LRT, are retrieved for the current
purpose.

Firstly, a new training set needs to be defined,
which will be used to feed the mixture model.
In addition, three more sets will be created to
correctly address and detect statistical difference
between true and false counterparts. All sets are
defined in the same vector space and are standard-
ize with respect the training set. Each entry, no
matter the set contained into, does not represent
a single point, it is a vector encoding informa-
tion from pairs of sources, each corresponding
to the reference and secondary catalog. Pairs are
selected over single points on the grounds that
the goal is not to look after structures within each
catalog, it is to find that of counterparts across
catalogs.

Color is a magnitude that is composed by the
combination of sources from both catalogs, thus
it fits the desired purpose.

Moreover, it is important to define the correct
number of input data dimensions that will be fed
into the model. In this scenario where noise is
present and both populations (true vs false coun-
terparts) are considerably overlapped, could be
useful to consider an expansion regarding the
input data dimensionality as much as possible.
By the previous, it is easier for the model to ex-
tract complex data structures using more dimen-
sions since spacial distance increases exponen-
tially with dimensionality.

The final dimension selected is 7. The first com-
ponent holds the K band magnitude (OPT) and
the rest are filled with the colors mopt −mmips,
where mopt can take brightness belonging to 6
different bands (V, K, B, I, J and R).
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Training is unsupervised since true counterparts
are not identified. Therefore, the training set is ob-
tained by computing the 7-dimension vector with
pairs of sources proximal to each other (< 2′′).
This generated set does not necessarily contain
true counterparts but it is expected that all (observ-
able) true identifications are contained in itself.

The identifications thrown by the LRT will be
considered as ground truth, although the model is
not aware of them during training (unsupervised).
In fact, color based LRT identifications are used
to build the ’true’ matches set (LRT matches set),
encoding each pair as the defined 7-dimensional
vector.

For comparison purposes it is required a set of
points that combines true counterparts and iden-
tifications that are most surely not real. In order
to produce such set, from now on denoted as test,
the same procedure used for the training set will
be used but retrieving pairs which are separated
less than 6′′ instead of 2′′. By this means, the test
set contains all the training elements plus those
which lay in the range 2′′ < r < 6′′, a subset of
false identifications since their distance is high
for them to be counterparts.

In order to correctly analyze the populations un-
der study, the test set is divided a second time to
produce a new one containing all the elements
which are not simultaneously present in the LRT

matches set, i.e. the no-matches set (NM set).
Therefore, the total sample size of the test set
should be the sum of the NM set and LRT matches
set.

Set Sample size # features

Train 912 7
Test 2538 7

LRT matches 855 7
NM 1683 7

Table 9: Summary of datasets.

Once the four sets are defined (summary in ta-
ble 9), normalization is carried out. As common
practice, training data is transformed to have zero
mean and unit variance. Accordingly, the rest of
the sets are standardized w.r.t. the training set.

In GMM there is only one free parameter left
for validation: number of clusters. In order to
select the best model, the Bayesian information
criterion (BIC) is used and is defined as:

BIC = k ln (n)− 2 ln (L̂) (9)
,where k is the number of parameters of the model
(mean and covariance of each Gaussian compo-
nent), n is the sample size and L̂ is the maxi-

mized value of the likelihood of the model M ,
p(x|θ̂,M) being θ̂ the parameters in the optimal
point.

BIC penalizes the model when the number of pa-
rameters is increased to avoid overfitting in spite
of greater likelihood values over the model. This
criteria has limitations but for the current sce-
nario it is a simple option that serves the purpose.
Models with lower BIC are preferred.

Moreover, the covariance matrix type can be cho-
sen to be independent from one component to
another, equal, with equal diagonal or to have its
own single variance. Fully independent covari-
ance matrices for each cluster usually produces
better quality models under the BIC criteria.

GMM learning is achieved by Expectation-
maximization (EM) algorithm, thus there is not
an unique solution. The model with lowest BIC
out of several runs is selected.

Predicted labels of all points from all sets will
be obtained using the final model. Ideally, points
that are considered false matches would belong
to different clusters than those that are considered
counterparts.

Finally, to proof our initial hypothesis, the train-
ing points from each cluster will be used to feed
a KDE to address the similarity between q(m, c),
obtained in section 3.3.3, and the learned clusters
retrieved by the mixture model.

KDE was used in order to simplify the compar-
ison. The learned parameters from each cluster
live in a 7-dimensional space, while q(m, c) is
a set of curves mapped from a single dimension.
Therefore, the intensity from the K band of points
within clusters is used to ’project’ densities into
a single dimension to fairly compare affinities
between results.

4.3 Results

Hereafter, two different result will be showed: the
GMM model learned using 6 and 5 clusters, both
using MIPS and OPT as matching catalogs.

# of clusters final model BIC

5 4182.47
6 4297.78

Table 10: Final models and their BIC value.

Spite of the fact that the model with 5 clusters
achieves the lowest BIC, it is interesting to com-
pare models with the same number of grouping
elements as seen in the color LRT modality re-
garding q(m, c). The BIC value for 6 clusters
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Figure 24: BIC scores per model and covariance matrix type. The starred bar represents the best
model (6 clusters).

Figure 25: Histograms of predicted labels for all sets (6 clusters). Each bar/cluster represents the
number of points from the set that are contained within itself.

still obtains the second lowest from a total of 10
runs (Table 10). As shown in Figure 24, the final
model for that execution is 6. It is clear that a
full covariance matrix for each cluster produces
notable improvements under the BIC criteria.

Figure 25 is composed by four histograms, each
of them corresponding to the predicted labels of
points conforming the described sets in their cor-
responding title.

Similarities between histograms from train (up-
per left corner) and LR matches (bottom left cor-
ner) are easily explained since 93.75% of LRT
matches are contained in the training set.

The test set (upper right corner) fully contains the
train set, in addition to pair of sources that lay
between 2′′ < r < 6′′. The inclusion of such

points increase the population of the four densest
clusters depicted in the train histogram.

Given the great difference of sample sizes be-
tween the LR matches and the NM sets (855 vs
1683), resampling has been applied to the last
set in order to compare equal number of samples.
Note that both sets are totally exclusive, therefore
no point in any of both sets is present in the other.

Several insights can be extracted when comparing
the cluster’s distribution of LR matches (bottom
left corner) in contrast to false matches (bottom
right corner).

In one hand, clusters 0 and 3 are clearly the least
representatives in contrast with the rest due to its
small population. Nonetheless is observed that
only 14.3% (cluster 0) and 6.7% (cluster 3) of

6Percentages are computed given the assumption that the cluster’s total size is the sum of the LR matches set
and the NM set sizes (bottom left and right histograms in Figure 25).
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false identifications are located in such clusters.
6 It seems that most of the pairs contained in the
mentioned clusters are likely to be true counter-
parts. However, the discriminative power of both
clusters is weak due to the small proportion of
points w.r.t. the total.

On the other hand, clusters 2 and 5 show a ro-
bust majority from points belonging to a single
set. While in cluster 2, 86.5% are LRT matches,
77.5% of pairs are false matches in cluster 5.

Figure 26: Overlapped histograms of predicted
labels from LR matches and NM set.

A deeper analysis should be carried out to con-
firm the previous conclusions since biases could
be hidden. In the best case scenario, the obtained
proportions within clusters can only provide a
prior probability, not a methodology to separate
true identifications from wrong ones.

Continuing with the analysis, it is convenient
to inspect the characteristics of each cluster and
compare them to the prior knowledge obtained
with LRT. It may be possible that improvements
acquired in the color modality in contrast to the
only-magnitude version could be due to discrimi-
native structures found on the current cluster anal-
ysis.

In order to address the prior, densities from each
cluster are estimated as described in section 4.2.

Figure 27: Estimated densities of each cluster by
means of a KDE.

Figure 28: q(m, c) for 6 color bins.

In the above figures it is depicted the estimated
densities from each cluster (Figure 27) and
q(m, c) for the optimal number of color bins from
color LRT modality (Figure 28) ran over MIPS
and OPT catalogs.

Before addressing similarities an important fact is
that densities from clusters 0 and 2 are estimated
with a small sample (8 and 16 respectively), neg-
atively influencing estimations. Note that the
model under description (6 bins) is not the best
one regarding the BIC criteria.

In spite of the above, it is seen that some cluster’s
pdfs have similarities with respect some curves
depicting some color bins found in q(m, c). For
instance, regarding the brown curves (right most
graphs in both figures), it can be said that their
mode is roughly equal. Purple curves follow the
same behavior as well. It is not a coincidence that
these densities are precisely the ones correspond-
ing to the densest clusters, therefore estimations
are reliable.

For the estimation of q(m, c), the color dimension
was divided in equally-spaced ranges to obtain
each q(m, c = c∗). Thus, overlapping between
color bins is reduced. In contrast to the clusters
found on the GMM model, their densities present
stronger superposition since clusters’ domains
were not explicitly defined as in q(m, c), they
are learned from inherent structures within data
(mainly color).

Modal equality in some curves does not imply a
direct relationship. Given the deficient estimates
in several curves is impossible to correctly quan-
tify density similarity, e.g. using KL divergence.

Following the same format as in the mixture
model for 6 clusters, results are shown for 5 in
Figures 29 and 30. Such model achieves the low-
est score in BIC among a total of 10 runs.

Again, independent covariance matrices for each
cluster produces the best model. Nonetheless, it
can be seen that scores are similar for 6 clusters at
that execution. Looking at the previous results for
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Figure 29: BIC scores per model and covariance matrix type. The starred bar represents the best
model (5 clusters).

Figure 30: Histograms of predicted labels for all sets (5 clusters). Each bar/cluster represents the
number of points from the set that are contained within itself.

6 clusters, two clusters were less representative
w.r.t. the others, thus an intuitive claim would be
that reducing the number of clusters by one unit
would help ’fill’ those spaces to maximize the to-
tal number of representatives clusters. This is not
always the case under our specific circumstances.
It was already seen that in the previous run where
6 clusters was the optimal choice, reducing the
number of clusters did not improve quantitatively
the model (BIC).

As expected, histograms of predicted labels for
each set show more relevance and representa-
tional power in 4 out of 5 clusters. In comparison
to 6 clusters, points have been redistributed rather
homogeneously.

After resampling the NM set and comparing it
with the LR matches set through the histograms
computed upon their predicted labels, there are
some interesting insights to mention.

Generally speaking, there are only a couple of
clusters (2 and 4) that manifest a majority propor-
tion of points coming from one set (LRT matches
vs NM). More specifically, 84.2% of points in
cluster 2 are matches and only 23.57% in cluster
4. Therefore, these clusters are (apparently) cap-
turing characteristics that are most discriminative
between true and false identifications.

Cluster 3 does show a prevalence regarding the na-
ture of the points within it, however such majority
is arguable regarding its significance in terms of
discriminative properties. This is due to a weaker

7Again, computations regarding proportion follow the same rule as explained in the previous model, i.e. the
total population of each cluster is considered the sum of the last attributed to the predicted labels of sets LR
matches and NM.
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proportion (65.8% of matches) in contrast to that
of clusters 2 and 4.7

The rest of the cluster do not show robust discrim-
inative statistics (less that 60%).

Figure 31: Overlapped histograms of predicted
labels from LR matches and NM set.

Similarly as exposed in the previous example,
Figure 32 shows densities of each cluster learned
by the model, estimated by means of a KDE.

As occurred with some clusters in the 6 clusters
model, there is one deficient estimation (blue
curve representing cluster 1 produced by a small
sample size (23).

Figure 32: Estimated densities of each cluster by
means of a KDE.

Figure 33: Estimated densities of each cluster by
means of a KDE.

Looking at Figure 33, depicting the already
shown densities for 6 clusters, the four right-most
clusters in both graphs have almost identical form
(Table 11).

M. 6 clust. Color legend M. 5 clust. Color legend

5 brown 4 purple
1 purple 0 red
4 red 3 green
2 green 2 orange

Table 11: Similarity of densities of clusters be-
tween models with 5 and 6 clusters. The 2nd and
4th columns are associated to the color legends
in Figures 33 and 32 respectively.

The (apparently) common cluster in both mod-
els are also the most representative ones, while
fainter clusters (regarding brightness) are both
wrongly estimated and less condensed.

Concluding with this experiment, the optimal
mixture model selected under the BIC criteria
(5 clusters), seems to extract a more reliable dis-
tribution within clusters, in spite of sharing statis-
tical structure with the model trained for 6 clus-
ters. Mainly this is due to the fact that points
are predicted into denser clusters, leaving just a
non-representative one.

5 Conclusions & Further Work

The current work faces a complex problem of
unsupervised nature that cannot be defined un-
der any known format within the ML field (i.e.
classification, estimation, etc...). The only option
is to find reliable structures within data in addi-
tion to specific knowledge based tools in order to
overcome the x-matching problem.

The results exposed in this document are ambigu-
ous in order to establish a clear and direct relation-
ship between the LRT performance in relation to
the hidden structures found by the mixture model.
Notwithstanding, some similarities between both
procedures bring some evidence into the right di-
rection and could help future lines of work willing
to inquire deeply in the subject.

Last but not least, it is crucial to mention that all
this results are based upon assumptions that could
be not accurate enough. Several sets that are used
across this experiment rely on the identifications
thrown by the LRT color modality, considered as
ground-truth. This might as well introduce biases
that could hassle the current analysis. In any case
it is a good starting point to begin with.

Further work could be driven in the direction
of astronomical objects classification, ultimately
allowing a more accurate process towards a x-
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matching algorithm. Class estimation should be
carried out individually at each catalog.

Pairs of candidates could also be processed in
terms of property similarities, provided that cata-
logs contain several band measures for each point.
Combining the estimated label defining the type
of star (i.e. galaxy, star, etc...) and several bright-
ness measures from both candidates, ML could
estimate whether both potential counterparts are

describing the same Spectral Energy Distribution
(SED), which models the magnitude of a single
object at any given frequency. A condition for
not guaranteed success is the availability of high
populated catalogs since SEDs vary dramatically
between objects, even of the same class. In such
scenario with huge amounts of data, pivoting to
deep learning techniques would be a plausible
option.

19



References

[1] Ciliegi, P., Zamorani, G., Hasinger, G., Lehmann, I., Szokoly, G., and Wilson, G. (2003). A deep
vla survey at 6 cm in the lockman hole. A&A, 398(3):901–918.

[2] Fleuren, S., Sutherland, W., Dunne, L., Smith, D. J. B., Maddox, S. J., González-Nuevo, J.,
Findlay, J., Auld, R., Baes, M., Bond, N. A., Bonfield, D. G., Bourne, N., Cooray, A., Buttiglione,
S., Cava, A., Dariush, A., De Zotti, G., Driver, S. P., Dye, S., Eales, S., Fritz, J., Gunawardhana, M.
L. P., Hopwood, R., Ibar, E., Ivison, R. J., Jarvis, M. J., Kelvin, L., Lapi, A., Liske, J., Michałowski,
M. J., Negrello, M., Pascale, E., Pohlen, M., Prescott, M., Rigby, E. E., Robotham, A., Scott, D.,
Temi, P., Thompson, M. A., Valiante, E., and Werf, P. v. d. (2012). Herschel -ATLAS: VISTA
VIKING near-infrared counterparts in the Phase 1 GAMA 9-h data . Monthly Notices of the
Royal Astronomical Society, 423(3):2407–2424.

[3] Luo, B., Brandt, W. N., Xue, Y. Q., Brusa, M., Alexander, D. M., Bauer, F. E., Comastri, A.,
Koekemoer, A., Lehmer, B. D., Mainieri, V., and et al. (2010). Identifications and photometric
redshifts of the 2 ms chandra deep field-south sources. The Astrophysical Journal Supplement
Series, 187(2):560–580.

[4] Nisbet, D. D. (2018). PhD thesis. PhD thesis, The University of Edinburgh.

[5] Notni, P. and Richter, G. A. (1976). Optical Identifications of Radio Sources in the 5C Areas.
Astronomische Nachrichten, 297(6):265.

[6] Sutherland, W. and Saunders, W. (1992). On the likelihood ratio for source identification. ,
259:413–420.

[7] Williams, W. L., Hardcastle, M. J., Best, P. N., Sabater, J., Croston, J. H., Duncan, K. J., Shimwell,
T. W., Röttgering, H. J. A., Nisbet, D., Gürkan, G., and et al. (2019). The lofar two-metre sky
survey. Astronomy Astrophysics, 622:A2.

Acknowledgments and Disclosure of Funding

The work of Óscar Manuel Jiménez Rama has been supported by an ISDEFE scholarship from April
2020 to September 2020.

This work was supported by the project Evolution of Galaxies AYA2017-88007-C3-1-P, within
the "Programa estatal de fomento de la investigación científica y técnica de excelencia del Plan
Estatal de Investigación Científica y Técnica y de Innovación (2013-2016)"of the "Agencia Estatal de
Investigación del Ministerio de Ciencia, Innovación y Universidades"

20


	Introduction
	Data & Preprocessing
	Part 1: Likelihood Ratio Test as X-match algorithm
	LRT general formulation
	LRT methodology 1: magnitude
	Computation of n(m)
	Computation of q(m)
	Likelihood ratio thresholds
	Results X-match: MIPS vs OPT
	Results X-match: PACS vs OPT

	LRT methodology 2: magnitude and color
	Computation of n(m,c)
	Computation of q(m,c)
	Results X-match: MIPS vs OPT
	Results X-match: PACS vs OPT


	Part 2: Problem Reformulation Under ML Frame
	Motivation
	Implementation and considerations
	Results

	Conclusions & Further Work

