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REPORT QUANTUM MECHANICS AND OPTICS 

  

1. QUANTUM MECHANICS 

Quantum mechanics is a theory in physics that provides a description of the behavior 

of matter and energy on the atomic and subatomic scale. 

 

Comparing classical mechanics with quantum mechanics, two main ideas can be 
concluded. 
 
Firstly, classical states description is fundamentally different from the quantum one. In 
the classical world, the state of a system can be described using exact values of 
position and momentum. Quantum physics on the other hand, describes a state using 
a wave function, which can represent probabilities for the measurement outcomes of 
observables such as position and momentum. 
 
Secondly, in the classical field, the behavior of each particle and its interactions with 
other particles is predictable. What is more, if it is measured twice, the result of the 
experiment – if the particle is not modified – is unchanging throughout time. 
Nevertheless, quantum physics is nonintuitive. The relationship between states and 
measurements is uncertain, and it can change over time. If a particle is measured 
twice, the solutions obtained can be random and unexpected. 
Therefore, quantum mechanics is nondeterministic, meaning that it does not describe 
the behavior of physical systems with complete precision (is probabilistic). 
 

 

INTRODUCTION TO QUANTUM MECHANICS 

 

• State vectors, the inner product and the superposition principle 

 
In quantum mechanics, in order to describe the properties of a quantum system at a 
given time, the state of a system, state vectors are used. They are represented by a 
complex-valued vector in a vector space called Hilbert space. 
 
To start with, let´s explain how to represent state vectors. We use “bras” and “kets”. 
They are mathematical objects that are written using angle brackets and bars. 
A ket is a column vector which can be represented with a vertical bar on the left and 
angled bracket on the right, between the name of the vector. In symbols, 

|A⟩ = (
A1

A2

A3

) = A1|i⟩ + A2|j⟩ + A3|k⟩ 

Where |A⟩ is the ket representation of the vector A⃗⃗  and An are the ket components for 
the basis ket |i⟩, |j⟩ and |k⟩. 



On the flip side, bras are represented by a row vector and are written in opposite 
positions as kets, with the angled bracket on the left and the bar on the right. They are 
the conjugate transpose of a ket. 
 

⟨A| = (A1
∗   A2

∗  A3
∗ ) 

 
For every bra there is a corresponding ket. To clarify, bras and kets don´t inhabit the 
same vector space. Bras inhabit the “dual space” to the space of kets. For each ket in 
the Hilbert space, exists a corresponding bra in the dual space. This can be hard to 
understand, so think of the complex conjugates in classical mathematics. There is a 
corresponding complex conjugate (1 – 2i) for each complex number (1 + 2i). This 
relationship is similar to the relationship between bras and kets. 
 
When a bra acts on its corresponding ket, the result is the square of the ket's norm, a 
scalar value. 

⟨A|A⟩ = (A1
∗   A2

∗  A3
∗ ) (

A1

A2

A3

) = |A⃗⃗ |2 

This operation is called “the inner product”. Mathematically, the inner product of two 
state vectors gives a complex result, which is defined as the sum of the product of the 
complex conjugates of the coefficients representing the first vector with the 
coefficients representing the other vector. Basically, the product of a bra and a ket. It 
represents the projection of one vector onto the other. In the case below, the inner 
product can be thought as the projection of the content of the ket |B⟩ onto the 
content of the bra ⟨A|. 
 

⟨A|B⟩ = (A1
∗   A2

∗  A3
∗ ) (

B1

B2

B3

) =  A1
∗B1 + A2

∗B2 + A3
∗ B3 

 
A distinct approach could be explained based on the superposition principle. The 
superposition principle is a fundamental aspect that states the idea that two or more 
states can combine and form a new state.  To put it another way, suppose there are 
two pure states, states that can be represented by a single state vector with total 
certainty, |ψ1⟩ and |ψ2⟩, they can be superposed to create a new one, |ψ⟩: 
 

|ψ⟩ = c1 |ψ1⟩ + c2 |ψ2⟩ 
 
The final equation is a weighted combination, where c1 and c2 are the components of 
|ψ⟩, which is a mixed state. 
 
So, the inner product can be understood as representing how much of state |ψ1⟩ is  
present in |ψ⟩.  Mainly, it is used to measure the similarity between the two states, so 
it determines the relative weight of the states in the superposition. 
 



This idea allows us to define the components of |ψ⟩, c1 and c2, as the inner product 
between the combined state and the corresponding state vector |ψ1⟩ or |ψ2⟩ under 
one condition. The state vectors must be orthogonal. 
 
In symbols, 
 

⟨ψ1|ψ2⟩ = 0 
 

It can be proved easily:         
 

|ψ⟩ = c1 |ψ1⟩ + c2 |ψ2⟩ 
 

We take the inner product of both sides with ⟨ψ1|: 
 

⟨ψ1|ψ⟩ = c1 (⟨ψ1|ψ1⟩) + c2 (⟨ψ1|ψ2⟩) 
 

If ψ1 is normalized, ⟨ψ1|ψ⟩ = 1. Furthermore, if ψ1 and ψ2 are orthogonal:  
 

⟨ψ1|ψ⟩ = c1 

 
The components are complex coefficients that do not have a direct physical meaning 
by themselves, but are needed in order to calculate the probability of finding the 
system in a particular state. The larger the magnitude of the component is, the higher 
the probability is going to be. 
 
In this case, the square root of the magnitude of c1 will describe the probability of 
finding the system in the |ψ1⟩ state: 
 

P ψ1 = |c1|2 
 
There are several different ways to assess the probability. For instance, it is 
represented as: 
 

P ψ1 = c1*c1 
 
Likewise, this applies to the c2 coefficient. The probability of being in the |ψ2⟩ state can 
be written as c2*c2. 
 
As the inner product can define the components, it can also be used to calculate 
probabilities. 
 

P ψ1 = |c1|2 = |⟨ψ1|ψ⟩|2 
 
 
 
 



• Expectation values 

 
The expectation values describe the average over the possible outcomes of a 
measurement of an observable in a system. They are usually represented as a symbol 
called “E” or “⟨ ⟩”. 
 
In terms of mathematics, the expectation value of an observable A is defined by the 
inner product: 

⟨A⟩ = ⟨ψ|Â|ψ⟩ 
 
Represented by the operator Â for a system in the state |ψ⟩. 
 
An operator is a mathematical object that acts on a state vector of a system and 
produces another state vector. From a mathematical perspective, 
 

Â|ψ⟩ = |ϕ⟩ 
 

|ϕ⟩ also belongs to the Hilbert space, as |ψ⟩ does it. 
 
The result of the expectation value will be the average value of all measurement 
outcomes of the observable A when operating Â. 

One important idea to take into consideration is that the expectation value is not the 
result of one measurement, but the average over many evaluations. In other words, 
the expected value is a measure of the most likely value of a quantum mechanical 
observable. It is not the result of an experiment over time, nor is it the specific 
numerical value obtained in a single measurement. Instead, it represents the average 
of an observable's value over many measurements, weighted according to the 
probability of each value occurring. 

Another way to calculate the expectation value is by using the probabilities of the 
overcomes, and the overcomes themselves. 
 

⟨A⟩ =  ∑ λ n n  P(λ n) 
 

P(λ n) is the probability of the eigenvalues λ n of the operator being the outcome of the 
measurement. 
 
To comprehend this, let´s explain a fundamental property of quantum mechanics. The 
eigenvalues of an operator represent the possible outcomes of a measurement of the 
corresponding observable. For this reason, the expectation value is the weighted sum 
of the possible results, where each outcome is weighted by its corresponding 
probability. 
 
 
 
 
 



• Commutation 

 
Considering two observables, A and B, the order in which the measurements are made 
doesn´t affect the final results, if and only if, both observables commute. The degree of 
commutation is defined as: 
 

[A,B] = AB – BA 
 
The more sensitive the observables are to the order in which the experiment is made, 
the larger the commutator. If the order does not matter, the commutator will be zero. 
 
It's worth mentioning that [A,B] = - [B,A]. 
 
Another important concept related to commutation is overlap. It indicates how much 
the outcomes of two observables after measuring coincide with each other. In simpler 
terms, if the overlap is perfect, the results obtained are completely compatible. 
Measuring one observable does not affect the subsequently measurement of the other 
one. Therefore, they commute. 
 
On the other hand, if the overlap is not perfect, the measurement outcomes are 
mutually exclusive. It affects to the probability of analyzing one observable after the 
other, which means that they do not commute. Consequently, non-commuting 
operators can result in uncertainty or unpredictability in the results. 
 
When two observables belong to two different systems, they can construct a new 
combined system by taking the tensor product of the states of the individual systems. 
This mathematical operation is notated as: 
 

|ψ⟩⊗|ϕ⟩ = |ψϕ⟩ 
 

Where |ψ⟩ and |ϕ⟩ are states of the systems, respectively. 
 
Despite the confusing notation, it is important to remark that |ψϕ⟩ represents a single 
state of the composite system, not two, even though it is written with a double index. 
 
The main feature of a product state is that each subsystem behaves independently of 
the other. This means that the state of each subsystem does not depend on the state 
of the other subsystem, and measurements on one subsystem do not affect the state 
of the other subsystem. 
 
Nevertheless, if the two systems are correlated, the state of one system can influence 
the state of the other systems, and vice versa. 
 
For this reason, when we try to combine the two correlated systems, an entangled 
system is obtained. 
 



The latter is defined as a system in which the state of one of the systems depends on 
the state of the other one, even if the two systems are spatially separated. If the state 
of one particle is measured, the state of the other particle is instantaneously 
influenced. This idea is a consequence of the superposition principle, which states that 
a quantum system can exist in multiple states simultaneously. 
 
In order to understand the entangled systems, we can think in classical world. Imagine 
flipping two coins, 1 euro and 2 euros, simultaneously. If one coin, the 1 euro or 2 coin 
(doesn´t matter), comes up heads, the second coin will either come up heads or tails. 
The only way we can tell which, is by looking at it. To put it another way, the state of 
one coin has no effect on the state of the other. It doesn´t affect the second coin´s 
state. Therefore, the coins are not entangled. 
 
However, consider two quantum coins. In the same way, one of one euro and the 
other of two. Let´s think about you and me. Imagine that a friend gives one of the coins 
to each of us, but we cannot look at them yet. First, you need to go to your dream 
destination. Free vacation. Once you are there and I am here, at home (not fair), I am 
going to call you and tell you that if I guess which one is yours, the one euro coin or the 
other, you have to invite me to your hotel so we can both enjoy the holidays. 
Obviously, I will win. Why? Because in the moment that I look at my coin, I know yours 
perfectly. It would be impossible to guess before looking at the coin, but after it is 
100% certain. 
 
Even if the coins are located far apart, we can instantaneously determine the state of 
one coin by measuring the other. The two coins' states are connected. Here, the 
condition of one coin immediately influences the condition of the other coin. 
Therefore, the coins are entangled. 
 
This “stupid” example shows how entanglement works. I hope you have understood it. 
 
Returning to the quantum world and leaving the classical world behind, there is an 
important idea we must know. Entanglement is not all or nothing. 
 
The states of entangled particles can be more or less entangled. The degree of 
entanglement is determined by the amount of information that can be transferred 
from one particle to another through the entangled state. If they are highly entangled, 
the information we know about the other state is very significant. The stronger the 
correlation between the particles, the more information can be transferred and the 
more entangled the particles are considered to be. 
 
An example of a maximally entangled state is called the singlet. It can be express as: 
 

|sing⟩ = 
1

√2
  (|ud⟩ - |du⟩) 

 
Where |ud⟩ and |du⟩ are states of a combined system. 
 



The singlet state is a state in which two particles are in a superposition of being spin-up 
and spin-down, as seen. 
 
On the other hand, the triplet states are another example of highly entangled states. 
They are described mathematically: 
 

|T1⟩ = 
1

√2
  (|ud⟩ + |du⟩) 

 

|T2⟩ = 
1

√2
  (|uu⟩ + |dd⟩) 

 

|T3⟩ = 
1

√2
  (|uu⟩ - |dd⟩) 

 
To close with, two fundamental statements need to be mentioned. 
 
First of all, an entangled state is a full description of two or more particles that are  
connected and their behavior affects each other. No further information can be known 
about the individual particles. 
 
Secondly, in a maximally entangled state, nothing is known about the individual 
subsystems. 
 

• Hermitian operators 

 
A Hermitian operator is an operator that is equal to its own adjoint. To clarify, it is 
equal to the transpose of its complex conjugate. 
 
This can be expressed as: 
 

M = [MT]* 

The right side of the equation is also denoted as M†. 
 
This type of operators has several useful properties that will be helpful in further 
sections. 
 
To begin with, let´s talk about one of the most important properties. The eigenvalues 
of a Hermitian operator are real numbers. 
 

M|ψ⟩ = ψ|ψ⟩ 
 
Where ψ is real. In other words, equal to its complex conjugate ψ*. 
 
It can be easily demonstrated: 
 
Firstly, we need to rewrite the last equation so we have the bra ⟨ψ| applied to the 
Hermitian conjugate of M. Using the definition of Hermitian conjugation: 



⟨ψ|M† = ⟨ψ|ψ* 
 
Secondly, the inner product must be calculated in both equations: 
 

⟨ψ|M|ψ⟩ = ψ ⟨ψ|ψ⟩ 
 

⟨ψ|M†|ψ⟩ = ψ*⟨ψ|ψ⟩ 
 

Thirdly and last, as we know that M is Hermitian, 
 

⟨ψ|M|ψ⟩ = ψ ⟨ψ|ψ⟩ 
 

⟨ψ|M|ψ⟩ = ψ*⟨ψ|ψ⟩ 
 
Therefore, 
 

ψ ⟨ψ|ψ⟩ = ψ*⟨ψ|ψ⟩ 
 
ψ is equal to its complex conjugate ψ*. 
 
Another important property is that the eigenvectors of a Hermitian operator, 
corresponding to different eigenvalues, are orthogonal. 
 
Remember that orthogonal means that the inner product of the eigenvectors is equal 
to zero. 
 
We start with 
 

M|ψ1⟩ = ψ1|ψ1⟩ 
 

⟨ψ2|M = ⟨ψ2|ψ2 
 

Notice that the second equation is valid only because M is Hermitian, and then, 
 

ψ2 = ψ2* 
 
If not, we would need to write it as: 
 

⟨ψ2|M = ⟨ψ2|ψ2* 
 
As before, we take the inner product on both equations with the other eigenstate: 
 

⟨ψ2|M|ψ1⟩ = ψ1 ⟨ψ2|ψ1⟩ 
 

⟨ψ2|M|ψ1⟩ = ψ2 ⟨ψ2|ψ1⟩ 
 
 
 



Substracting the first one from the second one: 
 

ψ1 ⟨ψ2|ψ1⟩ - ψ2 ⟨ψ2|ψ1⟩ = 0 
 
If ψ1 and ψ2 are different, 
 

⟨ψ2|ψ1⟩ = 0 
 
Orthogonality has been demonstrated. 
 
This characteristic is crucial because it enables the linear combination of orthogonal 
eigenvectors representation of a quantum state, which in many occasions, can simplify 
calculations. 
 

• Unitary and time-development operator 

 
The evolution operator U(t) is used in quantum mechanics to describe how a quantum 
system evolves over time. Given the initial state of a system, the time-evolution 
operator can be used to calculate the state of the system at any later time. 
Imagine there is a state |ψ⟩. In order to distinguish it in different moments, let´s 
denote |ψ(0)⟩ for the state |ψ⟩ at time 0, initial time. On the other hand, at time t, it 
will be described as |ψ(t)⟩. 
 

|ψ(t)⟩ = U(t)|ψ(0)⟩ 
 
It is important to note that the state does not represent the actual state of the system, 
but rather, it gives us the probability amplitude of finding the system in a particular 
state. Only when a measurement is made we can determine the actual state of the 
system. The outcome of the measurement is uncertain, and the probabilities of 
obtaining different results are given by the square of the magnitude of the quantum 
state. So even if we know the quantum state at a specific time, we can't say for sure 
what the state of the system is. 
 
The state only gives us information about the probabilities of finding the system in 
different states, and only a measurement can determine the actual state. 
 
The time-development operator has several important properties: 
 
Time reversibility: Because the operator is time-reversible, we may compute the state 
of the system at any other time if we know the state of the system at a given time. This 
enables both future and previous predictions.  
 
This property is quite obvious, knowing all that we already know. 
 
Linearity: The evolution operator is linear. It can be represented as a linear 
combination of other evolution operators. 
 



If we have two time-development operators U1(t) and U2(t), a third one can be 
represented: 
 

U(t) = αU1(t) + βU2(t) 
 
The conservation of distinctions: The inner product between two states will remain 
constant over time. 
 
Essentially, if the inner product between two states is equal to 1, the states are said to 
be "distinguishable", which implies that the states are orthogonal. On the other hand, 
if the inner product is equal to 0, the states are said to be "indistinguishable”. 
The conservation of distinction means that if two states are distinguishable at one 
time, they will continue to be distinguishable at all times, and the same logic for 
indistinguishable states. If the inner product between two states is equal to zero, it will 
remain zero over time. 
 
It can be represented with symbols: 
 

⟨ψ(0)|ψ(0)⟩ = 0 
 

Therefore, 
 

⟨ψ(t)|ψ(t)⟩ = 0 
 

Unitarity: The evolution operator is unitary. 
 
The unitarity of U ensures that the evolution it describes is norm-preserving, meaning 
that the square of the norm of the wave function representing a state is always equal 
to the probability of finding the system in that state. This ensures that the total 
probability of finding the system in any state is always equal to 1. 
 
As the norm of the quantum state remain constant, the total probability of finding the 
system in any of its possible states is conserved over time. 
 
Unitary can be demonstrated mathematically as: 
 

⟨i|U†(t)U(t)|j⟩ = δij ;    i = j 
 

Where U†(t) is the adjoint of U(t), and δij is the Kronecker delta function, which is 
equal to 1 if i = j and 0 otherwise, being i and j basis vectors. 
 

⟨i|U†(t)U(t)|j⟩ = 0 ;    i ≠ j 
 
Likewise, we know that 
 

⟨i|j⟩ = δij ;    i = j 
 



⟨i|j⟩ = 0 ;    i ≠ j 
 
Furthermore, 
 

⟨i|I|j⟩ = δij ;    i = j 
 

⟨i|I|j⟩ = 0 ;    i ≠ j 
 

Consequently, U†(t)U(t) acts as the identity operator between any two basis vectors 
in the basis set. 
 
These equations above state that the inner product of two time-evolved states with 
the same initial state is equal to the identity matrix, implying that the evolution is 
reversible and that the total probability is conserved. 
 
 

• The Hamiltonian and time-dependent Schrödinger equation 

 
The evolution operator U(t) studied above describes the time-evolution of the 
quantum state over a finite interval of time t. However, to reach the Schrödinger 
equation for the time-evolution of a quantum state, it is often more convenient to 
break up the time interval t into many infinitesimal time intervals є and consider the 
time-evolution operator U(є) for each small interval. 
 
This allows us to build up a finite time interval by combining many infinitesimal 
intervals. In other words, we can rewrite U(t) as a combination of U(є). 
 
Let´s focus on our goal, solve the Schrödinger equation. 
 
We define the evolution operator in symbols: 
 

U(є) = I – iєH 
 
The minus sign is arbitrary. We just use a “-“ because it will be more helpful, it will 
provide an easier approach in the future. H is known as the Hamiltonian, which will be 
explain in a few sections. 
 
Once we have defined U(є), we calculate the Hermitian conjugation. 
 

U(є)† = I + iєH† 
 

As U(є) U(є) † = I, 
 

(I – iєH)(I + iєH†) = I 
 

 
 



If we ignore terms with є2 or higher powers of є, the equation leads to: 
 

H† - H = 0 

 

Hence, the Hamiltonian is Hermitian. 

 

H† = H 

 
Returning to the goal, we remember |ψ(t)⟩ = U(t)|ψ(0)⟩ , describing the state |ψ(t)⟩  
in terms of it at an initial time 0. 

We got rid of t so, we can rewrite the expression: 

|ψ(є)⟩ = U(є)|ψ(0)⟩ 

To put it differently, 

 

|ψ(є)⟩ = (I – iєH)|ψ(0)⟩ 

 

Modifying the order and taking the limit as є approaches 0,  

 
∂|ψ⟩ 

∂t
 = -iH|ψ⟩ 

 

Finally, we reach the time-dependent Schrödinger equation. 

 
 

• Quantum statistics 

 
Let’s move on to another important concept called density operator. It represents the 
quantum state of a system. In other words, it encodes all the information about the 
state of a system, including the probabilities of the measurements results. It can 
describe both pure and mixed states, in contrast to the wave function, which only uses 
pure states. 
 
The operator ρ is defined as the outer product of the state vector of the system with 
itself: 
 

ρ = ∑  n ρ n |ψ n⟩⟨ψ n| 
 
|ψ n⟩ being the states of the system and ρ n their coefficients. 

The elements of the density operator represent the probability amplitudes of the 
different states of the system, and the diagonal elements represent the probabilities of 
the system being in those states. 
 



The density operator, also known as density matrix, is also useful to calculate the 
expectation value in terms of the trace.  
 

⟨A⟩ = tr{ρÂ} 
 

The trace returns the sum of the diagonal elements of the matrix. In the formula 
above, the trace is being used to sum the elements of the matrix formed by the 
product of the density operator and an observable A. 
 
Remember we studied before that the expectation value was ⟨A⟩ =  ∑ λ n n  P(λ n). 
Consequently, 
 

∑ λ n n  P(λ n) = tr{ρÂ} 
 
Another purpose of the trace is to write the probability of a measurement A. It is 
helpful when we do not have complete knowledge of the state of a quantum system, 
which is common – due to the uncertainty principle. 
 
To obtain the probability of a state, first, we need to calculate the density operator of 
the corresponding state. Once this is done, we just need to figure out the trace of that 
density operator recently estimated, multiplied by the density operator of the system. 
 

P(A) = tr{ρa ρ} 
 
Some fundamental properties of the density matrix are: 

1. It is a positive semi-definite matrix. Hence, its eigenvalues are all non-negative. 
 

2. It is Hermitian. This means that it is equal to its own conjugate transpose. 

ρ = [ρT]* 

3. It is normalized. The sum of the diagonal elements of the matrix is equal to one. 

tr{ρ} = 1 

Any normalized Hermitian operator can be accepted as a valid density operator for a 
quantum state on condition that it has non-negative eigenvalues. 
 
Moving on to another related subject, let's consider an operator, known as reduced 
density operator, used to describe the state of a subsystem of a larger system. It is 
obtained by taking the trace of the density operator of the larger system over the 
degrees of freedom of the subsystem. 

 
ρ1 = tr{ρ} 

 
ρ1 refers to the reduced density operator of the subsystem 1. tr{ρ} instead, denotes 
the trace over the degrees of freedom of the composite large system. 
 



On the other hand, one important idea you must keep in mind is that the states of a 
system can be pure or mixed, as it has been mentioned before. A pure state can be 
represented by a single state vector, as a result of this, there is no uncertainty in the 
state. A mixed state, on the other hand, is a state that cannot be represented by a 
single state vector. Instead, it is a probabilistic mixture of several pure states. 
 
With the aim of characterize the purity of a state, several options can be selected.  
 
Firstly, the von Neumann entropy. It is a measure of the amount of uncertainty or 
mixedness in a quantum state. 
 

S = -k tr{ρ ln ρ} ; k ≡ Boltzmann constant 
 
Pure states are defined as S = 0, while for mixed states, the overcome is positive. In 
terms of the von Neumann entropy: S > 0. 
 
Secondly, to measure how mixed a quantum state is, the purity can be used. It is 
defined as the trace of the square of the density operator, which value is one for pure 
states, whereas for mixed states, is less than one. 
 

Purity ≡ tr{ρ2} 
 
 

• Principles of Quantum Mechanics 

 
The principles of quantum mechanics are fundamental concepts that describe the 
behavior of very small objects. We are going to list them, which will also be useful in 
order to remember key concepts: 
 
Postulate 1: Observables in quantum mechanics are represented by linear and 
Hermitian operators. 
 
Linearity means that if we have two wave functions, ψ1 and ψ2, and an operator Â, 
then the following must satisfy: 
 

Â (c1ψ1 + c2ψ2) = c1 Â ψ1 + c2 Â ψ2 

 
It is required for the superposition property, which holds that a quantum state can be 
in multiple states at the same time, just before being measured. Once the 
measurement is made, the entire superposition of states collapses to a single term. 
 
On the other hand, remember Hermitian operators satisfy the following property, 
where M is an operator: 
 

M = M† = [MT]* 

 
That is, the operators must be equal to their own Hermitian conjugates. 



The overcome of any experiment is a real number. Hence, the observables in quantum 
mechanics need to be represented by Hermitian operators because they have real 
eigenvalues, which are the results of the measurement (postulate 2). What is more, 
Hermitian operators are used because they form a complete and orthogonal set. In 
other words, any wave function can be expanded as a sum of the eigenvectors of the 
operator. 
 
Postulate 2: The only possible results of a measurement are the eigenvalues of the 
operator that represents the observable.  
 

Â|λn⟩ = λ|λn⟩ 

 
This is only certain if the vectors |λn⟩ associated with the operator Â don´t change their 
direction when it is applied to them. 
 
Postulate 3: Unambiguously distinguishable states are represented by orthogonal 
vectors. 
 
Unambiguously distinguishable states are defined as different states which can be 
distinguished from each other without uncertainty. That is to say, it is possible to tell 
the states apart with total accuracy. 
 
Orthogonality refers to the property of two vectors being perpendicular to each other. 
Two vectors, u and v, are orthogonal if their inner product is zero. In symbols: 
 

⟨u|v⟩ = 0 
 

Orthogonal vectors are completely independent of each other. As a result, we can 
determine which of the two states the system is in by measuring it with complete 
certainty. 

 

Postulate 4: The probability of a quantum system being in a particular state is 
determined by the squared magnitude of the corresponding coefficient in the state 
vector. This can be written as an equation, where |A⟩ is the state vector, and |u⟩ and 
|d⟩ are possible states where the system can be: 

 
                                                                                                 P u = |α u|2 
                                     |A⟩ = α u|u⟩ + α d|d⟩ ; 
                                                                                                 P d = |α d|2 

 
It can also be expressed as the product of the inner product of |u⟩ and |A⟩ and its 
complex conjugate. 
 

P u = ⟨u|A⟩⟨A|u⟩ 
 

The inner product of two vectors is a measure of the overlap between the vectors. 
 



To express it differently, it estimates the degree of alignment between the two 
vectors. If they are perpendicular, the result will be equal to zero. However, if they are 
perfectly aligned, then the result will be the product of the magnitudes of the vectors. 
 
The expression can be simplified as: 
 

P u = |⟨u|A⟩|2 

 
The larger the magnitude squared of the inner product |⟨u|A⟩|2, the greater the 

probability of finding the system in state |u⟩. 
 
The inner product gives us a measure of the overlap between the two states, and the 
larger the overlap between |u⟩ and |A⟩, the more likely it is that the system will be 
found in state |u⟩ upon measurement. 
 
Postulate 5: The evolution of state-vectors with time is unitary. 
 
The state vector of a quantum system evolves over time in accordance with the 
Schrödinger equation, which describes how the state of a system changes as time 
passes. It can be written as: 
 

iħ 
∂|Ψ⟩

∂t
  = H|Ψ⟩ 

 
|Ψ⟩ is a quantum state and H is a Hamiltonian operator (it will be described latter, as 
said). 
 
The expression allows to figure out how the state vector will be at any later time if the 
initial state vector and the Hamiltonian operator are known. 
 
The Schrödinger equation is unitary, which means that it preserves the inner product 
of state vectors. In other words, if two states are initially orthogonal, they will remain 
orthogonal with the passage of the time. 
 
 
 

2. QUANTUM OPTICS 

 
Quantum optics and quantum mechanics are closely related, but they are not exactly 
the same. 
 
Quantum mechanics is a fundamental theory that explains the behavior of all quantum 
systems. It is a set of principles that provides a description of matter and energy at the 
quantum level. On the other hand, quantum optics is focused specifically on the study 
of light and how it interacts with matter. 
 



Quantum optics is based on quantum mechanics, as it uses concepts from quantum 
mechanics, in addition to electromagnetism and other fields. 
 
 

QUANTUM FIELD THEORY OF LIGHT 

 
Light can be described as a field, an electromagnetic field. This can be explained 
because the observables extend over time and space. The values of the physical 
quantity being measured, in this case the electromagnetic field of light, can be 
measured at every point in space and time. Basically, light can be measured at any 
point in space and time. 
 
We know that the field is composed of electric and magnetic fields, and that both 
oscillate perpendicular to each other, and at the same time, they oscillate 
perpendicular to the direction of propagation of the wave. This allows light to be 
described as an electromagnetic wave. 
 
We assume that the classical fields are the ensemble averages of the quantum fields: 
 

E = ⟨ψ|Ê|ψ⟩ ; H = ⟨ψ|Ĥ|ψ⟩ 
 

The electric field E is the expectation value of the observable Ê. This also applies to the 
magnetic field H and its observable Ĥ. 
 
As the classical electromagnetic field obeys the Maxwell´s equations, the quantum 
field strengths (E, H, D, B) also do. It is important to remark that this does not mean 
that individual quantum fields obey Maxwell's equations, but only the ensemble 
average of the quantum fields. 
 
The linearity of the Maxwell's equations allows us to express the fields as expectation 
values of the corresponding quantum observables. This is because the expectation 
values of the quantum fields are calculated as the inner product of the state vector and 
the operator, which is a linear combination of the eigenvectors. As a result, the 
behavior of the quantum fields can be calculated using the Maxwell's equations by 
replacing the classical fields with the expectation values of the corresponding quantum 
observables. 
 
In conclusion, the behavior of the classical fields can be predicted using the ensemble 
average of the quantum fields. 
 
Furthermore, if the expectation value ⟨ψ|Â|ψ⟩, of a Hermitian operator Â is zero for all 
states, it will also be zero for its eigenstates, and as the eigenvalues are given by the 
inner product ⟨ψ|Â|ψ⟩, all eigenvalues will be zero as well. 
 
 
 



• Hamiltonian operator 

 
It is challenging to determinate which quantum operator is the most important, as the 
significance of the operators depends on the context it is used in. However, there is 
one which undoubtedly is crucial in quantum optics: the Hamiltonian. The moment to 
understand it came. 

We have already mentioned it, but now we are going to focus on its description. 

It governs the time evolution of physical quantities. Basically, it acts on the state vector 
of a quantum system, describing how the state of the system will evolve over time. 

It describes the dynamics of the system and the way in which different physical 
quantities change over time. Given the Hamiltonian, we can predict the probability of 
finding a system in different states or different outcomes of measurements at different 
times. It provides the necessary information for calculating the time-evolution of all 
observable properties of the system. 

The Hamiltonian, H, appears in the time-dependent Schrödinger equation: 
 

iħ 
∂|Ψ⟩

∂t
  = H|Ψ⟩ 

 
Knowing the Hamiltonian, allow as to solve the formula and compute how the state 
evolves over time, as it has already been said. 
 
But the Hamiltonian plays a dual role. It is useful, on the other hand, to calculate the 

energy of a quantum mechanical system. The energy levels that can be observed in a 
quantum system are the same as the eigenvalues of the H operator. 
 
These levels in a quantum system are not able to take on any continuous value within 
a range. What does it mean? It means that they cannot be continuous values, they can 
only be certain discrete values. Which make sense because the eigenvalues of H are 
real values, as it is a Hermitian operator. The eigenvectors of the Hamiltonian 
operator, also known as energy eigenstates, correspond to those energy levels. 
 
To find the energy eigenvalues, the time-independent Schrödinger equation must be 
solved. By definition, 
 

H|E⟩ = E|E⟩ 
 

where H is the Hamiltonian operator, E is the energy eigenvalue, and |E⟩ is the energy 
eigenstate. 
 
Once the energy eigenvalues and eigenvectors are found, state vector |ψ⟩ can be 
written as a linear combination of the energy eigenstates, as they form an orthonormal 
basis: 
 

|ψ⟩ = ∑ cnn |E⟩ 
 



It's worth noting that this is a general case, where the system can be in a superposition 
of energy eigenstates. This explains why the state vector is written as a linear 
combination of the energy eigenstates and not as a single energy eigenstate. 
 
What is more, it´s important to clarify that the representation of the state vector in the 
energy basis will provide information about the energy levels of the system. However, 
other basis can provide different or additional information. 
 
The probability of finding the system in a particular energy eigenstate is given by the 
square of the corresponding coefficient, cn. 
 

Pe = |cn|2 
 
Since the state vector |ψ⟩ represents the quantum state of a system, it changes with 
time as the system evolves. To account for this, we use the time-dependent 
Schrödinger equation, as it describes how the state vector changes over time. To 
understand why |ψ⟩ can change over time, we need to keep in mind that although the 
energy states |E⟩ don´t evolve over time (stationary states), the coefficients cn can do 
so if the system is not in one of these stationary states. 
 
 

• Vector potencial and Coloumb gauge 

 
A gauge is a mathematical construct used to describe the behavior of physical systems. 
Think of it as a set of rules used for describing how a system acts. 
 
The Coloumb gauge allows the study of an electromagnetic field. In this gauge, the 
vector potential takes an important role. It is a vector field that is related to the 
electric and magnetic fields through the Maxwell's equations, which represents the 
electromagnetic field. 

The vector potential A(r,t) is chosen such that the divergence of the vector potential is 
set to zero. In symbols, 
 

∇⋅A(r,t) = 0 
 
The vector potential is transverse. Hence, it only has a non-zero component in the 
direction that is perpendicular to the direction of propagation, perpendicular to the 
direction of the electric field. That’s the reason why this gauge is useful because it 
allows to split up the longitudinal and transversal part of the vector. 
 
Charged particles interact with electromagnetic fields, and can be study through the 
vector potential A(r,t). Essentially, it can describe the behavior of charged particles in 
electromagnetic fields. For example, the energy levels of an electron in a magnetic 
field. 
 



The Coulomb gauge condition ensures that the vector potential describes a well-
defined electromagnetic field that is proportional to the charge density of the system, 
as it is related to the charge density ρ through the Poisson equation: 
 

∇2⋅A(r,t) = 
− 4πρ

c2
 

 
Basically, the change in the vector potential is proportional to the charge density of the 
system.  
 
The electromagnetic wave equation is given by: 
 

1

ε
 ∇× 

1

μ
 ∇×Â +  

1

c2

∂2Â

∂t2
  = 0 

 
 

• Light modes 

 
In quantum optics, instead of describing the electromagnetic field in terms of electric 
and magnetic field, as showed above, the central model used in order to describe light 
is the light mode. 
 
We have already talked about the vector potential and what it is. Now, we will 
continue defining it in a different way. The Â(r,t) vector potential can be expressed in 
terms of the modes of the electromagnetic field, by writing it as a superposition of 
different modes Ak(r,t), where K is a label that identifies the mode. The mode 
expansion of the vector potential is given by: 
 

Â(r,t) = ∑ (k âkAk(r,t) + âk
†Ak*(r,t))  

 

In the equation, âk are  âk
†
 are the expansion coefficients that illustrate the amplitude 

of each mode in the superposition. The coefficient of the complex conjugate wave 

Ak*(r,t),  âk
†, is the Hermitian conjugate of the coefficient of Ak(r,t). This is coherent 

because the potential vector is Hermitian. 
 
One important idea to pay attention to is that it is possible to depict the 
electromagnetic field in terms of its modes choosing any set of modes, with the 
condition that they must form a complete set and obey laws of electromagnetism.  
 
For the purpose of measuring the degree to which two modes differ from each other, 
the scalar product can be used. We already know this idea, but now we are going to 
use this tool for the comparation of different modes. 
 

(A1, A2) = 
1

i ħ
 ·∫(A1* D2 − A2 D1*)dV ;  D = -ε0ε 

𝜕𝐀

𝜕𝐭
 

 
In this specific form of scalar product, A1 and A2 are the two modes of the 



electromagnetic field, two mode functions, A1* is the complex conjugate of the first 
mode, D1 and D2 are the time derivatives of the modes, and the integral is taken over 
all space. 
 
The scalar product between the two modes holds some different properties. For 
instance: linearity and conjugate symmetry. 
 

(A1, A2) = (A2, A1)* 
 

(A0, α1 A1 + α2 A2) = α1 (A0, A1) + α2 (A0, A2) 
 

Another feature of the product is that it obeys 
 

(A1*, A2*) = - (A1, A2)* 
 

However, it is not positive definite, the scalar product between one mode and itself 
can be negative or equal to zero. 
 
The scalar product of modes is a conserved quantity, which means that it does not 
change over time, it remains constant. This can be mathematically shown by taking the 
derivative of the scalar product with respect to time: 
 

∂(𝐀𝟏,𝐀𝟐)

∂𝐭
 = 0 

 
This is a result of the time-independence of the wave equations of the modes. 
 
The symmetry of the scalar product between two modes is based on the idea that the 
wave equations that describe the modes are real and do not depend on the global 
phase factor of the modes. This means that the mathematical form of the wave 
equations remains the same, regardless of the phase factor applied to the modes. This 
symmetry, known as the gauge symmetry, allows for the multiplication of the modes 
by an arbitrary global phase factor without affecting the physical results, and it is a key 
property that ensures the conservation of the scalar product and the total probability 
in quantum mechanics. 
 
It's worth noting that the scalar product also plays a crucial role in determining the 

commutation rules for the mode operators â𝑘 and  â𝑘
† . These operators are used to 

create and destroy photons in a specific mode and their behavior is governed by the 
commutation relations, which will be developed further in the following section. 
 
 

• Base commutation relations 

 
Firstly, suppose there are two different modes, Ak and Ak’, that are orthonormal (called 
normal modes). 
 

(Ak, Ak’) = δkk’ ; (Ak, Ak’*) = 0 



Secondly, we are going to define the expansion coefficients in terms of the modes. 
 

âk = (Ak, Â)   âk
† = - (Ak *, Â) 

 
The next step is, using the definition of the scalar product, calculate the commutator 

between âk and  âk
†: 

 

[âk, âk
†] =  

1

i ħ
 ·∫ (Ak * Dk’ – Ak’ Dk*)dV 

 
Finally, the orthonormality conditions lead to the Bose commutation relations. 
 

[âk, âk′
† ] = δkk’ ;     [âk, âk′] = 0 

 

These operators, âk −  âk
†, describe the creation and annihilation of photons in a 

particular mode k. 
 
To understand the quantum physics of a mode, the only thing we need to know is the 
Bose commutation relation, which governs the behavior of the mode operators. This 
commutation relation is a key aspect of the quantization of the electromagnetic field, 
and it determines how photons interact with each other and with matter. By using the 
Bose commutation relation and the mode function, one can derive the quantum 
properties of light modes, such as their energy levels and the statistical behavior of 
photons in those modes. 
 
The degree of freedom is the number of independent parameters that define the 
configuration of the electromagnetic field in quantum. This number is equal to the 
number of modes. Each mode represents a specific frequency and spatial distribution 
of the field, and the properties of the field, such as the wave amplitudes and quantum 
fluctuations, are determined by the properties of these modes. 
The total Hilbert space of the degrees of freedom is the tensor product of the Hilbert 
spaces of all the modes. For a system with multiple degrees of freedom, such as an 
electromagnetic field, each degree of freedom can be described by a separate Hilbert 
space. The total Hilbert space of the system is then given by the tensor product of the 
individual Hilbert spaces of each degree of freedom. 
 
The relationship between the Bose commutation relation and the degree of freedom 
in light can be explained as follows: Each mode of light can be described by a set of 
creation and annihilation operators that obey the Bose commutation relation. The 
number of modes of light is equal to the number of degrees of freedom of the light. 
This means that each mode of light contributes one degree of freedom to the total 
number of degrees of freedom in the system. 
 
Basically, the Bose commutation relation establishes the relationships between the 
photons in different modes in a quantum mechanical system. 
 
 



• Interferences 

 
Wave-like superposition refers to the addition of two or more waves with different 
amplitudes, phases and frequencies. When two waves are superposed, the amplitude 
of the resulting wave is the sum of the individual amplitudes, and the expectation 
value of the field's observable is the sum of the individual expectation values. To see it 
more clearly, let´s see an example: 
 
Imagine two waves with different amplitudes, frequencies and phases, represented by 
the complex amplitudes E1 = A1eiϕ1 and E2 = A2eiϕ2 . These two waves are 
superposed, and the resulting wave is E = E1 + E2. Moreover, the amplitude of the 
resulting wave is the sum of the individual amplitudes: |E| = |E1| + |E2|, and the 
expectation value of the field's observable is the sum of the individual expectation 
values. 
 
The expectation value of an operator Â in the resulting wave-like superposition state is 
given by: 
 

⟨E|Â|E⟩ = ⟨E1|Â|E1⟩ + ⟨E2|Â|E2⟩ 
 
The phase of the resulting wave E depends on the phase difference between the two 
superposed waves, it can be constructive or destructive. 
 
On the contrary, quantum superposition, refers to the interference of possibilities, or 
probability amplitudes, of a quantum system. In quantum mechanics, a system can 
exist in multiple states simultaneously, and the probability of finding the system in a 
particular state is given by the squared magnitude of the probability amplitude. When 
two or more states are superposed, the probability amplitude is the sum of the 
individual amplitudes, and the expectation value of the field's observable is the sum of 
the individual expectation values. However, this behavior is different from wave-like 
superposition, as it doesn't add amplitudes directly, but probability amplitudes. An 
example of this could be: 
 
Consider two possible states of a quantum system, represented by the states |ψ1⟩ and 
|ψ2⟩. The superposition state can be written as |ψ⟩ = α|ψ1⟩ + β|ψ2⟩, where α and β 
are complex numbers called coefficients. The expectation value of an operator Â in this 
state is given by:  
 

⟨ψ|Â|ψ⟩ = α ⟨ψ1|Â|ψ1⟩ + β ⟨ψ2|Â|ψ2⟩ 
 
It is important to note that in general, the expectation value in a quantum 
superposition does not behave like a wave-like superposition, unless the states |ψ1⟩ 

and |ψ2⟩ belong to different modes. In that case, they are two independent waves and 
can add up as in wave-like superposition. And the expectation value ⟨ψ|Â|ψ⟩ will be 
the sum of the amplitudes ⟨ψ1|Â|ψ1⟩ and ⟨ψ2|Â|ψ2⟩. 
 



Now, we are going to move on to the idea of mode expansion, which is a way of 
describing the electromagnetic field in terms of its different modes of oscillation.  
 
It states that one mode Ak can be represented as a linear combination of other modes 
A’k’, which means that it can be thought of as a superposition of these different modes.  
This is written as: 
 

Ak (r,t) = ∑  k′ A'k' (r, t)  Bk'k 
 
Where Bk'k are complex constants, that determine how much of each mode A'k' is 
present in the mode Ak. 
 
This can happen, for example, when light is reflected or transmitted through a 
medium. In this situation, the incoming modes Ak are different from the outgoing 
modes A'k’, and the reflection or transmission process generates a superposition of 
these different modes. This is because the reflection and transmission process changes 
the amplitude and phase of the light waves, creating a superposition of the different 
modes of oscillation. 
 
The superposition we have already defined can be described in terms of new mode 
operators â'k', which are a linear combination of the original mode operators âk, with 
coefficients Bk'k. 
 

â'k' = ∑  k Bk'k âk 
 
In summary, this allows us to describe the electromagnetic field in terms of the new 
modes A'k’ and the associated mode operators â'k', preserving the orthonormality of 
the modes. 
 
 

• Zero point energy and Casimir force 

 
Let´s consider a cavity made of perfectly conducting, infinitely large plates at a certain 
distance a, where the electromagnetic field is confined. All the modes of the field will 
be stationary, because the perfectly conducting plates act as perfect mirrors, reflecting 
all the electromagnetic waves back into the cavity. 
 
In order to calculate the total energy, the Hamiltonian must be used. 
 

Ĥ = 
1

2
 ∫(ÊĐ + ɃĤ)dV 

 

Knowing that 
 

−∇ ·(A × H) + B · H = A
𝜕𝐃

𝜕𝐭
 

 

 



and that the integral of  ∇·(A × H) = 0 vanishes, 
 

Ĥ = 
1

2
 ∫(ÊĐ + A

∂𝐃

∂𝐭
)dV 

 

After some development of the formula, we finally obtain: 
 

Ĥ = ∑
ħωk

2
(k âKâK† + âK†âK) 

 
From Bose commutation relations, 
 

Ĥ = ∑ ħωk(k âK†âK + 
1

2
) 

 
 
The total energy of the electromagnetic field is the sum of the energies of the 
stationary modes. 
 
The minimal value of the energy is then, 
 

E0 = ∑
ħωk

2k  = ∞ 

 
Therefore, the energy of the electromagnetic field in the vacuum state is infinite, even 
if there are no photons. 
 

It's important to note that this is a simplifying assumption. In reality, the plates are not 
perfect conductors and not infinitely large. So, the number of modes will be limited by 
the finite size of the plates and the imperfections of the material. Anyways, we 
obtained that the energy of the vacuum state is infinite. 
 
You are probably asking: “what is the vacuum state?”. The vacuum state or quantum 
vacuum is, according to its name, a state of empty space. However, it is not truly 
empty. Instead, it is filled with fleeting electromagnetic waves and particles that pop 
into and out of the quantum field, generating energy. This energy is known as the zero-
point energy. 
 
It is described as the lowest possible energy that a system can have. However, it 
doesn´t mean that it is equal to zero, as we have already demonstrated. 
 
So, we have learnt that in quantum mechanics, even in the absence of any real 
particles, the vacuum state still has a certain amount of energy associated with it. This 
is known as the zero-point energy. But why does it have energy? The answer I´m sure 
is going to sound familiar: the Heisenberg uncertainty principle. 
It states that the more precisely the energy of a system is known, the less precisely the 
time at which that energy is measured can be known, and vice versa. In the case of the 
vacuum state, which is a state with no real particles, the uncertainty in the energy is 



not zero, but rather a certain minimum value. This minimum value is the zero point 
energy. 
 
The total zero-point energy of the modes of a quantized field in a finite-size cavity is 
indeed infinite, but this infinity can depend on the size of the cavity. The zero-point 
energy of a mode is inversely proportional to the size of the cavity. This means that as 
the size of the cavity increases, the zero-point energy of the modes decreases. 
 
Mathematically, it can be shown that the frequency of a mode in a cavity is inversely 
proportional to the size of the cavity. This is because the wavelength of the mode is 
determined by the size of the cavity, and the frequency is inversely proportional to the 
wavelength. 
 
Given the parameters l, m, and n, and the dimensions a, b, and c of the rectangular 
cavity, the formula for the frequencies of the modes can be written as: 
 

ωlmn = √(
lπ

a
)
2

+ (
mπ

b
)
2

+ (
nπ

c
)
2

 

 
Where l, m, and n are positive integers and a, b, and c are the dimensions of the cavity 
in the x, y, and z directions, respectively. 
 
In conclusion, the formula describes the frequency of an electromagnetic wave in the 
cavity for a given set of indices l, m, and n. It shows that the frequency of a mode is 
inversely proportional to the size of the cavity because as the dimensions of the cavity 
increase, the frequency of the mode decreases. It has been demonstrated that as the 
size of the cavity increases, the zero-point energy of the mode decreases. 
 
On the other hand, as the number of modes in the cavity increases, the total zero-
point energy increases. This is why the total zero-point energy can be infinite even if 
the energy of each mode is finite.  
 
Moving to another topic, fluctuations are random variations in the energy of a system. 
These fluctuations can be caused by the zero-point energy of a quantized field. 
 
In the case of the electromagnetic field, these fluctuations are known as vacuum 
fluctuations. The fluctuations result in random variations in the electric and magnetic 
fields, even in the absence of any real charges or currents. This means that even in a 
perfect vacuum, there is still some residual electric and magnetic field present, and 
these fields fluctuate randomly due to the zero-point energy of the electromagnetic 
field. 
 
It's worth noticing that the zero-point energy fluctuations in the electromagnetic field 
affect the fields, not the particles or the charges. Therefore, it is the electric and 
magnetic fields that fluctuate as a result of the zero-point energy, not the charges or 
the particles. 



The zero-point energy is a fundamental property of the electromagnetic field, and it 
cannot be eliminated or reduced. Consequently, these fluctuations are a fundamental 
feature of the electromagnetic field, and they cannot be avoided. 

 

One important idea to take into consideration is that not all quantum systems have the 
same level of fluctuations. Some systems have a higher zero-point energy and 
therefore exhibit larger fluctuations, while other systems have a lower zero-point 
energy and exhibit smaller fluctuations. The degree of fluctuations depends on the 
system and the specific quantum state it is in. 
 
Also, it's important to notice that the presence of fluctuations doesn't imply that the 
system is unstable or that it can't be controlled. In fact, fluctuations can be controlled 
and reduced by applying external forces to the system. 
 
Vacuum fluctuations have important practical implications in several areas of physics, 
such as in the Casimir effect. 
 
The Casimir effect states that two parallel, uncharged, and perfect conductive plates in 
a vacuum experience an attractive force due to the vacuum fluctuations of the 
electromagnetic field. 
 
When two parallel conductive plates are placed in close proximity, the vacuum 
fluctuations of the electromagnetic field between the plates are affected by the 
presence of the plates. The plates act as mirrors, reflecting some of the virtual photons 
back into the space between the plates. This means that there are fewer virtual 
photons between the plates than outside of them. 
 
For that reason, the energy density between the plates is lower than the energy 
density outside of them. This difference in energy density creates a pressure 
imbalance, and it results in an attractive force between the plates. The force is 
attractive and its magnitude decreases as the distance between the plates increases. 
 
If we have a movable cavity plate, where the position of the plate is the only variable 
that changes, the Casimir force can be calculated. To be more precise, an 
approximation of the Casimir force. 
 
The formula for the mechanical force generated by the zero-point energy of a movable 
cavity plate is given by: 
 

F = - 
∂U

∂a
 

 

Where F is the mechanical force, U is the difference in zero-point energy between the 
cavity and empty space, and a is the position of the movable cavity plate. This is 
derived from the general relationship between force and potential energy, which 
states that the force acting on an object is equal to the negative gradient of the 
potential energy with respect to position. In our case, the zero-point energy acts as a 



potential energy for the mechanical body (the movable cavity plate), and the force is 
equal to the derivative of the potential energy with respect to position. 
 
To calculate U, we must follow this equation: 
 

U = UCAVITY – UFREE SPACE 
 

UCAVITY is the zero-point energy inside the cavity with distance a between the plates, 
and UFREE SPACE is the zero-point energy in empty space (outside the cavity). 
 
It's important to note that the zero-point energy density in the cavity is different than 
that in the empty space, and it's affected by the distance and the boundary conditions 
of the plates. To calculate the zero-point energy density inside the cavity you need to 
take into account the specific geometry of the plates and the boundary conditions, and 
integrate over all the frequency modes of the electromagnetic field. 
 
Also, as it depends on the boundary conditions, if these conditions change, the zero-
point energy changes as well, and the difference in zero-point energy between the 
inside and outside of the cavity will be affected. 
 
Before going further, we need to define the boundary conditions. The boundary 
conditions in the Casimir force describe the physical conditions that are imposed on 
the electromagnetic field between two parallel metal plates. 

 

They state that the electric field must be perpendicular to the metal plates and that 
the normal component of the magnetic field must be zero at the metal surfaces. This 
means that the electromagnetic field is confined between the plates, it cannot 
penetrate the metal. Furthermore, only certain wavelengths of the electromagnetic 
field are allowed between the plates. This restriction of the wavelengths between the 
plates leads to a reduction in the zero-point energy of the electromagnetic field, which 
results in the creation of the Casimir force. 
 
The change in the zero-point energy between different plate separations gives rise to  
the Casimir force. To express it differently, the Casimir force is produced from the 
difference in the zero-point energy of the electromagnetic field between two parallel  
metal plates. 
 
When the boundary conditions and the specific geometry of the plates are considered, 
the difference in zero-point energy between the cavity and empty space can be 
represented as: 

U = - 
 π2L2cħ 

720a3
 

 
L2 is the area of the plates, whereas a is the distance between the plates. I imagine you 
already know the other terms of the equation, but just in case you don´t, c is the speed 

of light and ħ is the reduced Planck constant, ħ = 
h

2π
 . 



This formula is based on the assumption that the plates are perfect conductors, which 
is not the case for real materials, and the deviation from this formula is significant for 
small distances. 
 
Now, once we calculated the value of U, we can finally obtain F. 
 

F

L2
 = - 

 π2cħ 

240a4
 

 
The formula shows that the force per unit area is proportional to the inverse fourth 
power of the separation between the plates, a−4. This means that as the separation 
between the plates increases, the force decreases rapidly. 
 
The negative sign denotes an attractive force between the metal plates, which implies 
that as the space between them gets smaller, the energy (and hence the force) grows. 
The formula's application of the reduced Planck constant ħ shows that the Casimir 
force per unit area is remarkably low. 
 
This formula relates the change in the zero-point energy of the cavity with the position 
of the movable plate, assuming that the change in position of the cavity plate is small 
enough that the cavity can be treated as a harmonic oscillator and that the change in 
the zero-point energy is linear with respect to position. 
 
To sum up, light is represented as a superposition of multiple electromagnetic modes, 
each of which is described by the mode functions Ak (r,t). These mode functions have 
the classical, wave-like properties of light and are subject to the Coulomb gauge, the 
wave equation, and the necessary boundary conditions. 
 
As we have already mentioned, the Coloumb gauge allows us to describe the 
electromagnetic field. It specifies the form of the vector potential such that the 
longitudinal component of the electromagnetic field is zero, and the transverse 
component is non-zero. What is more, it can be fully described by the vector potential. 
 
On the other hand, the wave equation represents the behavior of light as a wave and  
determines the propagation of the electromagnetic field in space and time. It contains 
information about the probability amplitude of finding a particle at a certain location in 
a certain location at a certain time. 
 
Finally, to conclude the recap, the boundary conditions. The boundary conditions in 
the Casimir force define the conditions that the electromagnetic field must satisfy at 
the metal plates, in order to produce the Casimir force. These conditions set limits on 
the behavior of the electromagnetic field and are used to determine the solutions to 
the wave equation. For instance, that the electric and magnetic field components must 
be perpendicular to the metal plates and must be zero at the metal surfaces. 
 
It is important to note that fields are treated as particles and therefore, the 
electromagnetic field also has quantum degrees of freedom. The electromagnetic field 
can exist in different states, each with its own unique wave function and probability. 



The strength of a particular region of the light field is proportional to the magnitude of 
the wave function that describes it. In other words, at all points in space and time, the 
field strength will fluctuate due to changes in the wave function, even when there is no 
change in the state of the light. 
 

 

QUANTUM STATES OF LIGHT 
 
The photon number operator (n) is a mathematical operator in quantum physics which 
is used to express the number of photons in a certain mode of the electromagnetic 
field. In quantized electromagnetic field theory, it acts on the mode amplitudes (â) to 
calculate the number of photons in a particular mode. 
 

The creation and annihilation operators, â and â†, respectively, are used to define the 

photon number operator as n = â†â. The creation operator adds one photon to the 
number of photons in a mode, whereas the annihilation operator subtracts one  
photon from the number of photons in a mode. 
 
The expected number of photons in a mode can be computed by using the photon 
number operator's expectation value regarding a quantum state, represented as 
⟨n⟩. 
 
(Δn)2 = ⟨n2⟩ - ⟨n⟩2  gives the variance of the number of photons in a mode.  
This quantifies the spread of a mode's distribution of photons around its average  
value. 
 
The variance of the number of photons is related to the level of fluctuations in the  
electromagnetic field, which play an important role in different quantum optical  
phenomena (any observable events that result from the interaction of light and 
matter) such as quantum entanglement. 
 
In quantum optics, the photon number operator is used to study the properties of the  
electromagnetic field in various quantum states, such as coherent states, squeezed  
states, and Fock states. Don´t worry if you don´t know yet what are these states, we  
will go through them later in this chapter. 
 
Another important operator is the phase shift operator. It is an operator used in  
quantum physics to represent a wave function's change in phase. 
 
Mathematically, 
 

Û (θ) ≡ exp(−iθn); θ ≡ phase shift 
 

It is a unitary operator that can act on a wave function or state and adjusts its phase 
without changing its magnitude. 
 
 

https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Matter


When acting on â, results in the amplitude â with a phase shift θ. 
 

Û†(θ) â Û (θ) = â exp(−iθ). 
 

The phase shift operation is a unitary transformation, which means it preserves the 
normalization of the wavefunction, as we have already mentioned. What is more, as 
the magnitude of the wavefunction is unchanged, the probability of measuring any 
particular outcome remains the same after the transformation. 
 
However, the relative phase between different components of the wavefunction can 
change. 
 
The relative phase between components of the wavefunction determines the pattern 
of interference between those components, so if it changes, it can cause a different 
pattern of interference between the components. 
 
The phase factor can be used to describe the effect of time evolution, as well as 
various other interactions, on the quantum state. In quantum mechanics, time 
evolution is described by the Schrödinger equation, which states that the time 
evolution of a quantum state is given by the action of a unitary operator, such as the 
phase shift operator, on the initial state. 
 
In a nutshell, the phase shift operator is used to characterize the evolution of quantum  
states over time and to comprehend the influence of phase shifts on the wavefunction. 
 
To finish with, we will talk about two operators, named as quadrature operators. 
For monochromatic modes (light fields that have a single frequency), quadrature  
operators are observables that describe the two components of a quantum light field:  
the in-phase component and the out-of-phase component. 
 
The in-phase component, represented by q, describes the amplitude of the light field,  
while the out-of-phase component, represented by p, describes the phase of the light  
field. 
 
The quadrature operators can be represented in the form of creation and annihilation  
operators. 
 

q = 
1

√2
 (â† + â) ;    p = 

𝑖

√2
 (â† + â) 

 
Hence, 
 

â = 
1

√2
 (q + ip) 

 

The creation and annihilation operators are denoted by â† and â, respectively, and they  

satisfy the commutation relation [â, â†] = 1. 
 



[â, â†] = 
1

2
 [q + ip, q - ip] = 

−i

2
 ([q, p] + [q, p]) = 1 

 
It is not hard to see, then, that q  and p, which can be thought of as the position and 
momentum observables for a quantum harmonic oscillator, are canonically conjugate 
variables: 
 

[q, p] = i 
 
In this case, the reduced Planck constant, ħ, is set to 1. 
 
This equation states that the position and momentum operators do not commute and  
are therefore complementary observables. Basically, measurement of one will  
affect the measurement of the other. This is a result of the Heisenberg uncertainty  
principle. 
 
On one hand, q  and p  can be rotated by applying the phase shift operator to them. 
As we have studied: 
 

^qθ ≡ Û†(θ)q Û(θ)= q cos(θ) + p sin(θ) 
 

^pθ ≡ Û†(θ)p Û(θ)= - q sin(θ)+ p cos(θ) 
 

The relationship between the position and momentum representations of a quantum  

system can be seen by applying a phase shift of  
 π 

2
  to the position or momentum  

operator. Applying a phase shift of  
 π 

2
 to the position operator would bring about the 

momentum operator.  
 
On the other hand, the quadrature operators can be used in order to describe the  
energy of an electromagnetic oscillator. 
 
The energy can be described by the equation: 
  

Ê = n + 
1

2
 

 
Where Ê represents the energy of the oscillator and n represents the number of  
photons in the mode.  
 

The additional  
1

2
  in the equation above represents the zero-point energy of the 

single mode. The zero-point energy is the minimum possible energy that the oscillator  
can have, even in its ground state. This energy arises from the uncertainty principle,  
which prevents the position and momentum of the oscillator from being  
simultaneously precisely known. 
 
 
 



As we know the equivalence between n and â (n = â†â), 
 

q  = 
1

√2
 (â† + â)     ;    p  = 

i

√2
 (â† + â) 

 
The energy of the electromagnetic oscillator can be expressed as: 
 

Ê = n + 
1

2
  = 

(𝒒)2+ (𝒑)2

2
 

 

 

STATES OF THE ELECTROMAGNETIC OSCILLATOR 

 
In this section we will introduce four different states of the electromagnetic oscillator, 
although there are many more. Fock states, quadrature states, thermal states and 
coherent states. 
 
 

• Fock states 

 
Fock states are characterized as the eigenstates of the photon number operator. 
 

n |n⟩ = n|n⟩ 
 

The photon number operator acting on a Fock state |n⟩ gives the eigenvalue n, which 
correspond to the number of photons in the mode. 
 
One important property of Fock states is that they must be orthonormal. In order to 
ensure the orthonormality of the basis, it is required that the inner product between 
any two different Fock states is zero and the inner product between a Fock state and 
itself is one. 
 
This property allow us to calculate probabilities and expectation values in a consistent 
manner. 

We have studied in the previous section that the photon number operator is defined 
as: 
 

n = â†â 
 

Also, we know that â† and â are called as the creation operator and the annihilation 
operator, respectively. However, we have never known the reason. Let´s try to 
demonstrate it mathematically: 
 

â|n⟩ =√n |n – 1⟩ 
 

â†|n⟩ =√n + 1 |n + 1⟩ 
 



When â acts on the photon number operator, it decreases the number of photons in 

the mode by one, |n – 1⟩. Nevertheless, the creation operator â† increases the number 
of photons in the mode by one, |n + 1⟩. 
 
Because of these reasons, the creation operator (“adds” one photon) and the 
annihilation operator (“eliminates” on photon) are called this way. 
 
You could think now: “What happens if the annihilation operator acts on a state with 
zero photons?”. Good question. We know that if the photon number is an integer, the 
Fock state |n⟩ represents a mode with n photons. But if the photon number is reduced 
by one, after each application of the annihilation operator â, the Fock state will 
eventually reach |0⟩. To put it simply, it will represent a mode with no photons. 
 
The Fock state |0⟩ is called the vacuum state and is a special state in quantum optics. It 
is the state with the lowest possible energy and is often used as a reference point for 
the other Fock states. 
 
The vacuum state is defined by the property: 
 

â†â|0⟩ = 0 
 

The equation above, can be true only if 
 

â|0⟩ = 0 
 

or 
 

â†(â|0⟩) = 0  ;  â|0⟩ ≠ 0 
 

From the last equation, after some calculations, we conclude that this possibility must 
be rejected, because the solution of the equation is not normalizable. 
 

|ψ-1(q)⟩  = â|ψ0(q)⟩ 
 

It is not hard to figure out that the wave function of the state |-1⟩ is equal to the one 
of the state |0⟩ when the annihilation operator is applied. 

 

â†|ψ-1(q)⟩ =  0  
 

Following the same logic, the wave function of the state |0⟩ is equal to the one of the 
state |-1⟩ when the creation operator acts. 
 

|ψ-1(q)⟩ = C exp( 
q2

2
) 

 
Finally, in terms of q |ψ-1(q)⟩ is defined as above. Indeed, the result is not 
normalizable. 
 



Moving forward, analyzing the second equation, we realize that the annihilation 
operator does not have any effect on the vacuum state and the mode remains in the 
vacuum state. 
 
We can rewrite the mathematics as 

 
â|ψ0(q)⟩ = 0 

 
|ψ0(q)⟩ represents the wave function of the state |0⟩. The result expected should be  
 

â|ψ0(q)⟩ = |ψ-1(q)⟩ 
 
However, in reality, the state is still the vacuum state. 
 
Considering that the annihilation can be represented in the position representation 
using the quadrature decomposition and Schrödinger's formula, 
 

â = 
𝒒+i𝒑

√2
 ; p  = -i 

∂

∂𝒒
 

 
The equation can be written as 
 

𝒒+i(−i 
∂

∂𝒒
)

√2
 |ψ0(q)⟩ = 0 

 
Hence, the wave function of the state |0⟩ is defined: 
 

|ψ0(q)⟩ = π -1/4 exp(- 
q2

2
) 

 
 
The wave function of the different states can also be described mathematically. In 
order to achieve it, lets define |n⟩: 
 

|n⟩ = 
 â†n

√n!
|0⟩ 

 
After some operations, we can finally express |ψn(q)⟩: 
 

|ψn(q)⟩ = 
Hn(q)

√2nn!√π 
 exp(- 

q2

2
) 

 
Here the Hn(q) denote the Hermite polynomials. 
 



 
 

The quadrature wavefunctions of the first three Fock states: |ψn(q)|2 

 
The graphic shows that the quadrature probability distribution for the vacuum state is 
a Gaussian curve. 
 
 
 
 
 
 
 
 
 

The quadrature q of light in the vacuum state 

 
Finally, we can conclude that even if a light mode is considered to be "empty", in the 
sense that it contains no photons, it can still have a physically meaningful state that 
can cause physical effects. 
 
This can be explained because the vacuum state of a light mode, represented by the 
Fock state |0⟩, is not a state of complete absence of light, but rather a state of the 
lowest possible energy that is still subject to fluctuations inherent to the quantum 
nature of light.  
 
According to Heisenberg's uncertainty principle, the more precisely we know the 
position of a particle, the less precisely we can know its momentum, and vice versa. In 
the case of the electromagnetic field in the vacuum state, this means that the position 
and momentum quadratures must fluctuate in order to obey the uncertainty principle. 
 
These fluctuations are known as vacuum fluctuations, and the energy they provoke is 

called the vacuum energy. The latter, is the reason of the  
1

2
  term in the energy 

formula of an electromagnetic oscillator (Ê = n  + 
1

2
). 



The vacuum energy leads to the Casimir force, as we have studied in 2.1. 
 
 

• Quadrature states 

 
Quadrature states can be thought as the eigenstates of the quadrature operators. 
 

q |q⟩ = q|q⟩  ;  p |p⟩ = p|p⟩ 
 

The notation |q⟩ and |p⟩ represents a quadrature eigenstate, where q and p represents 
the quadrature operators. 

These states correspond to the real and imaginary components of the electric field in a 
light wave. They provide a convenient way to represent the light field in terms of its 
amplitude and phase. To clarify, the amplitude quadrature state corresponds to the in-
phase component of the light field, and the phase quadrature state corresponds to the 
out-of-phase component of the light field for monochromatic modes. 
 
The quadrature states are considered to be orthogonal and complete. 
 
Orthogonality means that the states are mutually perpendicular, and their inner 
product is equal to zero. On the other hand, completeness means that any state of the 
light field can be expressed as a linear combination of these eigenstates. 

In symbols, 
 

∫ |q⟩⟨q|
+∞

−∞
 = 1    ;    ∫ |p⟩⟨p|

+∞

−∞
 = 1 

⟨q | q´⟩ = δ(q − q´), ⟨p | p´⟩ = δ(p − p´) 

 
The amplitude and phase quadratures of the light field obey the canonical 
commutation relation. This commutation relation implies that the amplitude and 
phase quadratures cannot be precisely simultaneously measured, and thus their 
spectrum must be unbounded and continuous. 
 
This unboundedness of the quadrature spectrum means that the norms of the 
corresponding amplitude and phase states are not finite. 
 
Hence, since the quadrature states are not truly normalizable, they cannot be used to 
form a complete orthonormal basis for the light field. Instead, the physical states of 
the light field are described by coherent states, which are orthogonal and form a 
complete orthonormal basis for the light field. We will shortly delve into the details of 
these states, just hold on for a little while longer. 
 
The idea that they are not truly normalizable cause that they cannot be physically 
realized in an experiment, they don´t have physical meaning. This is because the 
quadrature states are defined over an infinite range, which would require an infinite 
amount of energy to generate. As a result, the quadrature states cannot be considered 



physical states and are typically used for mathematical convenience and to make 
predictions about the properties of the light field. 
 
The quadrature wave functions, unlike the quadrature states, have a physical meaning 
as they represent the amplitudes of the in-phase and out-of-phase components of the 
light field. 
 
These wave functions are expressed as: 
 

ψ(q) = ⟨q|ψ⟩  
 
Same idea will apply for p. The moduli squared of the quadrature wave functions 
correspond to the probability distribution of the light field in the amplitude and phase 
quadratures. These moduli squared provide information about the fluctuations and 
distribution of the light field in the in-phase and out-of-phase components. 
 
The quadrature eigenstates also follow the Heisenberg uncertainty principle, as 
mentioned before. Therefore, the product of the uncertainties in the amplitude and 
phase quadratures cannot be smaller than a certain value, that we will study later. We 
can not know both the amplitude and phase with accuracy. 
 
 

• Coherent states 

 
Do you remember the annihilation operator â, known as amplitude operator too? I 
hope so! If not, don´t worry, read a few pages before and you got it. 
Now that you know, let's explore the topic. 
 
We define coherent states as the eigenstates of the annihilation operator. 
 

â|α⟩ = α|α⟩ 

 
They exhibit a very smooth and stable behavior. 
 
The eigenvalues of the annihilation operator are complex numbers, because the 
annihilation operator â is not Hermitian. Therefore, coherent states have complex 
wave functions. However, the expectation values of the quadrature operators (the â 
operator can be expressed in terms of q and p), provided by the complex wave 
functions of the coherent states, are real numbers and they can be calculated. 
 
But it is important to note that these values are uncertain and subject to fluctuations 
due to the uncertainty principle in quantum mechanics. There is still an inherent 
quantum uncertainty associated with these values although the expectation values for 
a coherent state follow classical equations of motion. 
 



Likewise, the complex wave functions of the coherent states are used in order to 
represent the quantum mechanical uncertainty and fluctuations inherent in all 
quantum states. 
 
Coherent states are special types of quantum states that are used to describe the 
behavior of electromagnetic waves, such as light, in quantum mechanics. They are 
special in the sense that they behave very similarly to classical waves and their 
properties are very close to those of classical wave functions. This is why they can be 
known as classical states. 
 
The main idea of coherent states is that they have the property of being as close as 
possible to a wave-like state while still satisfying the rules of quantum mechanics. 
 
Any state that can be represented as a statistical mixture of coherent states is known 
as classical state. Nevertheless, any state that cannot be written as a coherent state 
ensemble, is called non-classical state. Thus, the distinction between classical and non-
classical states in quantum optics is based on the degree to which the state can be 
understood in terms of classical concepts. 
 
In addition to their wave-like behavior, coherent states are also special because they 
are the closest quantum states to a classical wave function. This is because the moduli 
squared of the coherent state wave function is proportional to the classical probability 
distribution for the position of the wave. 
 
The behavior of a coherent state wave function is very similar to the behavior of a 
classical wave function. 
 
Here's an alternative viewpoint on the coherent states, analyzing their properties.  
 
Firstly, we need to remember the vacuum state. We have studied that it is a Fock 
state, because it presents a definite number of photons. In particular, zero. 
 
However, it is often considered a coherent state due to its properties. Recently, we 

have concluded that â|0⟩ = 0, because we rejected the idea that â†(â|0⟩) = 0  when  
â|0⟩ ≠ 0. 
 
â|0⟩ = 0 follows the equation â|α⟩ = α|α⟩ when α is equal to zero, and therefore, it is  
a coherent state. 
 

Secondly, let us look at the properties of the coherent states. 
 

1. The coherent state can be expressed using the photon number  
eigenstates: 
 

|α⟩ = exp(- 
1

2
 |α|2)∑

αn

√n!
∞
n=0  |n⟩ 

 



As we mentioned before, the vacuum state it is both a coherent and Fock state. For 
this reason, and with the aid of an operator named displacement operator -D(α), the 
coherent state can be expressed as a superposition of Fock states. The operator D(α) 
where α is a complex number, is used to generate coherent states from the vacuum 
state. 
 
It is defined as below: 
 

D(α) = exp(αâ† – α*â) 
 
One important property of this operator is that it must be unitary. Thus, satisfy the 
equation: 
 

D†(α) D(α) = I = D(α)D†(α) 
 

It can be proved by solving: 
 

D†(α) D(α) = exp(α*â – αâ† )exp(αâ† – α*â) 
 
What is more, we have said that the displacement operator describes coherent states 
from the vacuum state. 
 
In mathematical terms, the displacement operator acts on the vacuum state as 
follows: 
 

D(α)|0⟩ = |α⟩ 
 
When the D(α) operator acts on the vacuum state, the result is a coherent state |α⟩. 
It is important to notice that this doesn’t mean that coherent states are equal to 
vacuum states. Instead, they only share some quantum noise properties. 
 
The noise properties in quantum mechanics refer to the uncertainties in the position 
and momentum of a quantum state. The position and momentum of a particle cannot 
both be zero. 
 
The vacuum state, as the lowest energy state, has minimum uncertainties in its 
position and momentum, which are referred to as quantum noise. This quantum noise 
can be thought of as fluctuations in the field. 
 
Similarly, coherent states, as they are a generalization of the vacuum state, also have 
similar quantum noise properties. 
 
It can be demonstrated, not here but you can demonstrate it, that: 
 

D†(α)âD(α) = â + α 
 
In words, the operator displaces the amplitude â by the complex number α. 



Let´s see if it is true: 
 

âD(-α)|α⟩ = D†(-α)D(-α)âD(-α)|α⟩ 
 

The identity property (D†(α) D(α) = I) has been used. 
 

D†(-α)D(-α)âD(-α)|α⟩ = D(-α)D†(-α)âD(-α)|α⟩ 
 

As we know that “D†(α)D(α) = D(α)D†(α)“. 
 

D(-α)D†(-α)âD(-α)|α⟩ = D(-α)(â - α)|α⟩ 
 

Finally, applying: “D†(α)âD(α) = â + α”, we obtained the right-side equation. If we 
analyze it, we realize that: 

 
(â - α)|α⟩ = â|α⟩ - α|α⟩ 

 
By definition, â|α⟩ = α|α⟩, so: 
 

(â - α)|α⟩ = α|α⟩ - α|α⟩ = 0 
 
That is to say,  
 

âD(-α)|α⟩ = |0⟩ ;  D(-α)|0⟩ = |α⟩ 
 
It has been demonstrated then, that the operator displaces the amplitude â by the 
complex number α. At the same time, it has been confirmed that the operator acting 
on the vacuum state creates a coherent state. But also, that the displacement operator 
acting on the state |α⟩, produce the vacuum state. It shifts the state in phase space by 
the complex number -α , from “α” to “α – α”, that is, the vacuum. 
 
 

2. The probability of finding the photon number n for the coherent state  
obeys the Poisson distribution: 
 

pn = |⟨n|α⟩|2 = 
|α|2𝑛

n!
 exp(- |α|2) 

 

Before studying the formula above, we are going to describe the relation between the 
vacuum and coherent states. We will start by calculating the quadrature wave 
functions. 
 
We write the displacement operator in terms of the quadratures q  and p 
 

D= exp(ip0q − iq0p) 
 
Applying the Baker–Hausdorff formula; we can describe D(α) as 
 



D(α) = exp(
−i p0q0

2
)exp(i p0q)exp(−iq0p) 

 

Important to remark that exp(ip0q) is equal to exp(ip0q) in the position 
representation. 
 

The first factor, exp(
−i p0q0

2
), is a phase factor that depends on the real part of the 

displacement parameter α, which is equal to q0. The second factor, exp(ip0q), is an 
exponential factor that depends on the imaginary part of the displacement parameter 
α, which is equal to p0. Finally, the third factor, exp(−iq0p), is a unitary operator that 
shifts the wave function along the momentum axis by the amount q0. 
 
The formula is important because it highlights the relationship between the real and 
imaginary parts of the displacement parameter α and the effect of the displacement 
operator on the wave function. 
 
This formula shows that the displacement operator acts on the position wave function 
by shifting it along the position axis, multiplying it by an exponential factor, and 
attaching a phase factor to it. 
 

ψα(q) = ψ0(q - q0) exp(ip0q - 
i p0q0

2
) = 𝜋−

1

4 exp ( - 
(q− q0)

2

2
 + ip0q - 

i p0q0

2
) 

 
The same idea for the momentum wave function: 
 

ψα(p) = 𝜋−
1

4 exp(-  
(p − p0)

2

2
 - iq0p + 

i p0q0

2
) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Position coherent state 

 
The quadrature probability distributions |ψα(q)|2  and |ψα(q)|2  of coherent states are 
Gaussian distributions with the same width as the Gaussian curve for vacuum. 
 
This distribution has the smallest uncertainty, just like the vacuum state. 
 



The displacement operator D(α) can also be expressed in terms of the creation and 

annihilation operators â† and â as follows: 
 

D(α) = exp(- 
|α|2

2
)exp(αâ†)exp(-α*â) 

 
Using the Baker–Hausdorff formula again, the above expression can be simplified to 
obtain the probability distribution Pn = |⟨n|α⟩|2, which describes the probability of 
finding the harmonic oscillator in the n-th energy state when it is in a coherent state. 
 
Let´s evaluate the inner product of the coherent state |α⟩ with the Fock state |n⟩, 
which is given by: 
 

⟨n|α⟩ = ⟨n|D(α)|0⟩ = ⟨n|exp(- 
|α|2

2
)exp(αâ†)exp(-α*â)|0⟩ 

 
The only thing we did is just express |α⟩ in terms of the displacement operator, 
applying its definition calculated before. 
 
After some algebraic manipulation, one can obtain the expression for the probability 
distribution, by taking the square of the magnitude of ⟨n|α⟩: 
 

Pn = |⟨n|α⟩|2 = 
|α|2𝑛

n!
 exp(- |α|2) 

 
This equation is known as the Poisson distribution, and it describes the probability of 
finding n photons in a state described by the complex amplitude α. 
 
 

3. The mean and variance of the photon number for a coherent state |α⟩  
are: 
 

⟨n ⟩ = |α|2 
 

⟨ Δ n 2⟩ = |α|2 
 
The mean photon number for a coherent state |α⟩ can be calculated using the 
following formula: 
 

⟨n ⟩ = ∑ nPn= |α|2n  
 
where Pn is the probability of finding n photons in the state, given by the Poisson 
distribution analyzed in the previous paper. 
 
Furthermore, the variance can be calculated using the mean photon number: 
 

⟨ Δn 2⟩ = ⟨n 2⟩ - ⟨n ⟩2 
 



Substituting the necessary values into the equation, the variance ends up being equal 
to the mean: 
 

⟨ Δn 2⟩ = |α|2 = ⟨n ⟩ 

 
This result shows that the variance of the photon number is equal to the mean photon 
number, which implies that the photon number is not very uncertain in a coherent 
state. This property is what makes coherent states an important class of states in 
quantum optics, as they provide a way to describe light that is very close to a classical 
light wave. This explains why the coherent states or vacuum states are often used as a 
reference, because they have relatively small fluctuations. 
 
The mean energy of a coherent state |α⟩ can also be calculated, as the expectation 
value of the Hamiltonian operator Ĥ over the state. The Hamiltonian operator for the 
harmonic oscillator, which is commonly used to describe the energy of a coherent 
state, is given by: 
 

Ĥ = â†â + 
1

2
 

 
where â† and â are the creation and annihilation operators, respectively. I remember 

it, but you should already know it ಠ_ಠ. 
 
The expectation value of the Hamiltonian operator over the state |α⟩ can be calculated 
as: 
 

⟨α|H|α⟩ = ⟨α|â†â + 
1

2
|α⟩ = |α|2+ 

1

2
 

 
So, the mean energy of a coherent state |α⟩ can be expressed as the sum of the 
quantum and classical energies, where the quantum energy is proportional to the 

magnitude of the displacement |α|2 and the classical energy is equal to 
1

2
. 

 
The mean energy of a vacuum state, which is a special case of the coherent state with 

α=0, is equal to 
1

2
, which is the minimum possible energy for the harmonic oscillator. 

 
 

4. Not exactly orthogonal: 
 

The inner product between two coherent states |α'⟩ and |α⟩ is given by: 
 

⟨α'|α⟩ = exp(- 
|α|2

2
) exp(- 

|α′|2

2
)exp(α'*α) 

 
Here, |α|2 and |α′|2 represent the average photon number of the coherent states, and 
α'*α is the complex conjugate of α' multiplied by α. The exponential term represents 
the overlap between the two coherent states in phase space. 
 



So, the square of the magnitude of the inner product is: 
 

|⟨α'|α⟩|2 = exp(- |α − α′|2) 
 
Coherent states are not exactly orthogonal to each other. As we have seen, the inner 
product between two different coherent states does not vanish, it is not equal to zero. 
This is because coherent states are not eigenstates of a Hermitian operator, therefore, 
they don't satisfy the criterion for being an orthogonal set of states. 
 
However, when the difference between the amplitudes α and α' becomes significantly 
larger than the quadrature noise level of the vacuum, it can be considered that the two 
states are largely orthogonal and their overlap is negligible. In other words, when the 
amplitudes of two coherent states differ sufficiently, their inner product becomes very 
small and can be considered as approximately orthogonal. 
 
 

5. Coherent states are complete: 
 

∫ ∫ |α⟩⟨α|
dq0p0

2π

∞

−∞

∞

−∞
  = 1 

 
They form a complete basis for the Hilbert space of a quantum system. Hence, any 
quantum state can be represented as a superposition of coherent states. 
 
 

• Thermal states 

 
To finish with, we are going to talk about thermal states.  
 
Light itself does not have the properties to reach an equilibrium state. However, when 
it comes into contact with a material, it can transfer its energy to the material and 
cause it to heat up, eventually reaching an equilibrium state with its surroundings. 
Light can reach an equilibrium state, but it cannot do so on its own. 
  
In order to describe thermal states, we need to know that a thermal state is a state of 
light such that the light is in a superposition of many Fock states. 
 

ρ = ∑  n ρn |n⟩⟨n| 
 
We have already study that Fock states are characterized as the eigenstates of the 
photon number operator, n. For this reason, when light interacts with a hot material, 
as the electromagnetic field exchanges photons with the material, the energy and the 
number of photons in the light fluctuates. These fluctuations result in thermal light. 
 
The reason of the random and unpredictable changes in the energy and photon 
number of the electromagnetic field can be explained by the random motion of the 
thermal particles. 
 



The exchange of photons between the light and the material causes the light to have a 
range of photon numbers, rather than a definite number as in a Fock state. Hence, the 
continuous absorption and emission of photons between light and the hot material 
results in a state of maximum entropy - remember that the entropy is a measure of the 
amount of uncertainty or disorder of the system. 
 
As the system is constantly fluctuating and the number of photons and their energies 
are not well-defined, the information about the system is maximally uncertain. 
Therefore, the exchange of photons in thermal light is random and incoherent. 
 
The entropy is expressed as: 
 

S = -k tr{ρ ln ρ} ; k ≡ Boltzmann constant 
 

As the trace is:  
 

tr{ρ ln ρ} = ∑  n ρn ln ρn 

 
The entropy can be rewritten, 
 

S = -k tr{ρ ln ρ} = -k ∑  n ρn ln ρn 

 
When thermal equilibrium is reached, entropy adopts the value: 
 

S = -k ln Z + 
E

T
 

 
where Z is the partition function, E is the average energy of the system, and T is the 
temperature of the system. 
 

E = ∑  n ρn En 

 

Z = ∑  n exp(
−k En

T
) 

 
The statistical sum (also known as partition function) takes into account the 
contributions of all possible states of the system. 
 
The thermodynamic temperature, T, can be expressed as the derivate of the entropy 
with respect to the energy, E: 
 

T = 
∂En

∂S
 

 
where the derivative is taken at constant volume. 
 
According to the second law of thermodynamics, the entropy of a closed system 
increases over time as heat is transferred from hotter to colder regions. The 



temperature of a system represents the rate at which its thermal energy changes in 
relation to its entropy. 
 
Going a little bit further, we know that a light mode of frequency ω can be treated as a 

simple harmonic oscillator. Therefore, we will focus on the thermal state of an 

electromagnetic oscillator in a light mode, and study the partition function, the density 

matrix, and the average photon number. 

For a single light mode, the partition function is given by: 

 

Z = 
1

1 − 𝑒−β
 

 

It's noteworthy to mention that: 
 

β = 
ħω

kT
 

 

What is more, the density matrix of a thermal state, that represents the probabilities 

of occurrence of all possible energy states, is described in symbols as: 

 

Z = (1 – 𝑒−β)∑ 𝑒−nβ∞
𝑛=0 |n⟩⟨n| 

 
Finally, the average photon number, represented by ¯n, is a measure of the average 
number of photons in a light mode at a given temperature T. The Planck spectrum of a 
harmonic oscillator in thermal equilibrium gives the relationship between the average 
photon number and the temperature of the system. The formula for the average 
photon number is given by: 

 

ṉ = 
1

𝑒β−1
 

 
The average photon number increases with temperature, as we can realize in the 
formula above, as β is indirectly proportional to T. It reaffirms the idea that more 
energy is required to excite the harmonic oscillator as the temperature increases. 
 
Moreover, when the entire electromagnetic field is in a thermal state, in other words, 

it is in a state of equilibrium with a temperature, the energy density of the field can be 

calculated. 

The energy density per unit volume and frequency is obtained by adding up the 

energies of all the modes (ħω¯n) that have the same frequency ω and dividing the sum 

by the total volume: 
 

ϱ(ω) = 
ħω3

π2c3

1

𝑒β−1
 

 

where c is the speed of light. 



This formula gives the energy density of a single light mode in a thermal state at 

temperature T and frequency ω, and ħ is known as the Plank´s radiation formula. 

 

 

• Uncertainty and squeezing 

 
The position and momentum of a particle cannot be simultaneously determined with 
arbitrary accuracy due to the Heisenberg Uncertainty Principle. This principle states 
that the product of the uncertainties in position and momentum cannot be smaller 
than a constant value, half of Planck's constant. 
 
Therefore, in any quantum state, there will always be some level of uncertainty in both 
position and momentum. However, in minimum uncertainty states, the uncertainties 
in position and momentum are optimized such that their product is as close to Planck's 
constant as possible. 
 
To show an example of a minimum uncertainty state in position space, let´s start with 
|ψ⟩, a possible candidate state. 
 
We calculate the average complex amplitude of the state |ψ⟩, which is equal to the 
expectation value: 
 

⟨ψ|â|ψ⟩ = α 
 
In words, the overall amplitude of the state |ψ⟩ is represented by α. 
 
For simplicity, the overall amplitude must be removed. This allows us to focus solely on 
the fluctuations in the position and momentum quadratures, rather than the overall 
amplitude of the state. The displacement operator shifts the origin of the state in 
phase space, so that the fluctuations can be analyzed without being influenced by the 
overall amplitude. 
 
As said, let´s apply the displacement operator, which will generate a new state with 
the same amount of quadrature noise as the initial state: 
 

|ϕ⟩ = D(-α)|ψ⟩ 
 

After applying the displacement operator D(−α), the average value of the complex 
amplitude, represented by ⟨ϕ|â|ϕ⟩, becomes 0, as the overall amplitude has been 
removed. The state |ϕ⟩  is centered at the origin in phase space, making it easier to 
analyze the fluctuations. 
 
From the expression 
 

δ = |
qϕ

2Δ2q
+ 

∂ϕ

∂q
|2 

 



Which represents the combined uncertainty in the position and momentum of the 
state |ϕ⟩. 
 

The first term represents the position fluctuations in the state |ϕ⟩, while the second 
one represents the fluctuations in the momentum. 
The absolute value is taken because the values of the position and momentum cannot 
be simultaneously known with complete certainty, so their fluctuations must always be 
non-negative. Essentially, greater than or equal to cero.  
 
If we integrate δ and make some assumptions, we will obtain: 
 

∫δ dq = 
− 1

4Δ2q
+ Δ2p ≥ 0 

 
This result is directly related to Heisenberg's uncertainty relation. The uncertainty 
relation states that for any quantum state, the product of the uncertainties in the 
position and momentum observables must be greater than or equal to one-half. 
 
Mathematically, the Heisenberg’s uncertainty relation with ħ = 1, for 
  

Δq = √Δ2q 
 

Δp = √Δ2p 
 
Is described as: 
 

ΔqΔp ≥ 
1

2
 

 
Finally, we can represent a minimum uncertainty state. 
 
The mathematical trick of integrating the expression: 
 

δ = |
qϕ

2Δ2q
+ 

∂ϕ

∂q
|2 

 
allows us to quickly identify the minimum uncertainty states, because the equality sign 

in the relation 
− 1

4Δ2q
+ Δ2p ≥ 0 holds only when: 

 
 1

2

 q

Δ2q
ϕ + 

∂ϕ

∂q
= 0. 

 
Therefore, 
 

ϕ(q) = (2πΔ2q)− 
1

4 exp(-
 q2

4Δ2q
) 

 
It is described by a Gaussian distribution in both position and momentum space. 



So, we have demonstrated that the product of the uncertainties of position and 

momentum must be greater than or equal to 
1

2
. Hence, in the case of a minimum-

uncertainty state, the uncertainties are equal to 
1

√2
. 

 
However, it is possible to squeeze one of the uncertainties (position or momentum) 
below this value, but the uncertainty in the other quadrature increases. 
 
The squeezing parameter ζ is used to describe the deviation of the variances from their 
vacuum values. Positive values of ζ correspond to squeezing in the position 
quadrature, while negative values correspond to squeezing in the momentum 
quadrature. 
 

Δ2q =  
1

2
𝑒−2ζ 

 

The equation above represents the relationship between the variance of position (the 
left side of the formula) and the squeezing parameter. According to the equation, the 
variance of position decreases as the squeezing parameter increases. 
 
In the same manner,  
 

Δ2p =  
1

2
𝑒+2ζ 

 
We can write the squeezing operator as 
 

Ŝ(ζ) = exp( 
ζ

2
 (â2 – (â†)2)) 

 
The squeezing operator is a unitary operator that is used to generate squeezed states 
in quantum mechanics. Squeezed states are states where the uncertainty in one of the 
quadratures has been reduced below the vacuum level, as mentioned before, 
increasing the uncertainty in the other quadrature. 
 
The squeezing operator acts on the vacuum state to generate a squeezed vacuum 
state, which can be written as: 
 

|ϕ⟩ = Ŝ(ζ)|0⟩ 
 
Moreover, states that have the minimum possible uncertainty in their position and 
momentum are referred to as "displaced squeezed vacua”. These states can be 
represented by a wave function, |ψ⟩, that is formed by the combination of a 
displacement operator, D(α), and a squeezing operator, Ŝ(ζ). 
 
In mathematical terms,  
 

|ψ⟩ = D(α)Ŝ(ζ)|0⟩ 



The displacement operator moves the vacuum state, |0⟩, to a new state that has a non-
zero expectation value for position and momentum, while the squeezing operator 
reduces the uncertainty in either position or momentum while maintaining the total 
uncertainty constant. 
 
Consequently, the position wave function is: 
 

ψ(q) = π− 
1

4 e 
ζ

2 exp(−e+2ζ  
(q− q0)

2

2
 + ip0q -  

ip0q0

2
 ) 

 

 
Quadrature noise of a squeezed vacuum 

 
The production of a squeezed vacuum requires a pump, which means that the 
resulting state carries energy. This energy is used to produce a nonlinear interaction 
and therefore, is what allows the squeezing operator to produce a squeezed vacuum. 
The energy provided is the necessary for the squeezing operator to change the 
fluctuations in the vacuum state and be able to generate the state.   
 
It is important to remark that squeezed vacuum states are not pure vacuum states. The 
latter, refers to a state with no energy or particles present. The presence of energy in 
the pump field means that the vacuum fluctuations have been altered and are no 
longer in a pure and undisturbed state. 
 
The energy used to generate the states must be carefully controlled in order to 
produce the desired degree of squeezing. If the energy of the pump field is too high, it 
can result in the production of excess noise in the squeezed vacuum state, which 
reduces the quality of the squeezing. 
 
The squeezing operator amplifies the vacuum fluctuations that are in-phase with the 
pump and deamplifies the fluctuations that are out-of-phase with the pump. 
 

The squeezing operator has effect on the quadratures when apply to them: 

 

Ŝ †(ζ)q Ŝ (ζ) = q e− ζ 
 



Ŝ †(ζ)p Ŝ(ζ) = p e+ ζ 
 

The squeezing operator changes the properties of the quadratures when it is applied 
to them. It does this by scaling the eigenfunctions of the quadratures. 
 
The expressions can be rewritten as: 
 

Ŝ†(ζ)âŜ(ζ) = â cosh(ζ) − â† sinh(ζ) 
 
Taking this into consideration, the energy 
 

⟨ψ|Ê|ψ⟩ = |α|2 + 
1

2
 + sinh2(ζ) 

 
The first factor is the energy associated with the coherent amplitude, which is given by 
the square of the magnitude of α. On the other hand, the second factor is the vacuum 

energy, which is always present and equal to 
1

2
. Finally, the last factor is the fluctuation 

energy, which is unique to squeezed states and arises from the enhanced fluctuations 
in the stretched component. 
 
The total energy of a squeezed vacuum state is a combination of both the squeezed 
and stretched quadratures, even though it is just the squeezed vacuum. This means 
that the energy of a squeezed vacuum state is not equal to zero, even though it is not a 
pure vacuum state. 
 
The photon number statistics of a squeezed vacuum can be calculated by using the 
number operator, which measures the number of photons in the state: 
 

pn = |⟨n|ϕ⟩|2 = |⟨n|Ŝ(ζ)|0⟩|2 

 

Where ⟨n|Ŝ(ζ)|0⟩ is defined as: 
 

⟨n|Ŝ(ζ)|0⟩ = ∫ ψn(q)e
 
ζ

2ψ0(e
ζq) dq

∞

−∞
 

 
It bears mentioning that the squeezed vacuum states only contains photon pairs. This 
is due to the mirror symmetry of squeezing and because it is created through a process 
called parametric process, which is described by the Hamiltonian. 

 

On one hand, they are symmetrical in nature, where the sign of the quadrature 
amplitude q does not affect their wave function as it remains even (ψ(q) = ψ(-q)). 
 
This property can be seen in the wave functions of the Fock states, which are even for 
even photon numbers and odd for odd photon numbers. This results in the scalar 

product integral “⟨n|Ŝ(ζ)|0⟩ = ∫ ψn(q)e
 
ζ

2ψ0(e
ζq) dq

∞

−∞
“ to vanish for odd photon 

numbers, where  

p2m+1 = 0 (m = 0, 1, 2, ...) 



On the other hand, squeezed vacuum states are created through a process known as 
parametric amplification, where the Hamiltonian of the system changes over time due 
to the interaction between light and a non-linear material. 
 
When light interacts with a material, it can change its properties and produce energy. 
The change in the light's properties and the production of energy is described by the 
Hamiltonian, which acts as an energy operator. The result of this interaction is the 
creation of a type of non-classical light known as a squeezed vacuum state. 
 
There are pump photons used to drive the interaction between the light and the 
material. When each of them interacts with the material, it is converted into two signal 
photons of half the pump frequency. Therefore, only photon pairs are produced. 
 
The probability to find a photon pair is described as: 
 

p2m = (2𝑚
𝑚

) 
1

cosh(ζ)
 (

tanh(ζ)

2
)2𝑚  (m = 0, 1, 2, ...) 

 
It can be noticed that each pair is independent of the others. In other words, the 
change in one photon pair does not affect the other photon pairs. 
 
However, the photons within each pair are correlated, so their properties are related 
to each other. If there is a change in one of the photons, the other is also affected. 
 
The last important idea to mention is that photons are produced in pairs, as we know. 
Nevertheless, when trying to measure the photons, due to the limitations of the 
detectors used, sometimes only one photon of a pair may be observed, even though 
the photons were generated in pairs. 
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